...
首页> 外文期刊>Journal of bacteriology >The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production
【24h】

The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production

机译:滨海嗜热菌的铁加氢酶协同利用铁氧还蛋白和NADH:厌氧制氢的新观点

获取原文
           

摘要

The hyperthermophilic and anaerobic bacterium Thermotoga maritima ferments a wide variety of carbohydrates, producing acetate, CO2, and H2. Glucose is degraded through a classical Embden-Meyerhof pathway, and both NADH and reduced ferredoxin are generated. The oxidation of these electron carriers must be coupled to H2 production, but the mechanism by which this occurs is unknown. The trimeric [FeFe]-type hydrogenase that was previously purified from T. maritima does not use either reduced ferredoxin or NADH as a sole electron donor. This problem has now been resolved by the demonstration that this hydrogenase requires the presence of both electron carriers for catalysis of H2 production. The enzyme oxidizes NADH and ferredoxin simultaneously in an approximately 1:1 ratio and in a synergistic fashion to produce H2. It is proposed that the enzyme represents a new class of bifurcating [FeFe] hydrogenase in which the exergonic oxidation of ferredoxin (midpoint potential, ?453 mV) is used to drive the unfavorable oxidation of NADH (E0′ = ?320 mV) to produce H2 (E0′ = ?420 mV). From genome sequence analysis, it is now clear that there are two major types of [FeFe] hydrogenases: the trimeric bifurcating enzyme and the more well-studied monomeric ferredoxin-dependent [FeFe] hydrogenase. Almost one-third of the known H2-producing anaerobes appear to contain homologs of the trimeric bifurcating enzyme, although many of them also harbor one or more homologs of the simpler ferredoxin-dependent hydrogenase. The discovery of the bifurcating hydrogenase gives a new perspective on our understanding of the bioenergetics and mechanism of H2 production and of anaerobic metabolism in general.
机译:嗜热和厌氧细菌 Thermotoga maritima 发酵多种碳水化合物,产生乙酸盐,CO 2 和H 2 。葡萄糖通过经典的Embden-Meyerhof途径降解,同时生成NADH和还原的铁氧还蛋白。这些电子载流子的氧化必须与H 2 的产生耦合,但是这种发生的机理尚不清楚。先前从 T中纯化的三聚体[FeFe]型氢化酶。 maritima 既不使用还原铁氧还蛋白也不使用NADH作为唯一的电子供体。通过证明该氢化酶需要同时存在两个电子载体来催化H 2 的产生,已经解决了该问题。该酶以大约1:1的比例同时协同作用氧化NADH和铁氧还蛋白,产生H 2 。建议该酶代表一类新的分叉[FeFe]氢化酶,其中铁氧还蛋白的强力氧化(中点电位,约453 mV)被用来驱动NADH的不利氧化( E < sub> 0 '=?320 mV)产生H 2 E 0 '=?420 mV)。从基因组序列分析中,现在可以清楚地看到[FeFe]氢化酶有两种主要类型:三聚体分叉酶和研究更深入的单体铁氧还蛋白依赖性[FeFe]氢化酶。已知的产生H 2 的厌氧菌中几乎有三分之一含有三聚体分叉酶的同源物,尽管它们中的许多也具有一个或多个简单的铁氧还蛋白依赖性氢化酶的同源物。分叉氢化酶的发现为我们理解H 2 产生以及一般厌氧代谢的生物能和机理提供了新的视角。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号