首页> 外文学位 >Thermotoga maritima glycerol dehydrogenase as a catalyst for dihydroxyacetone production: Enzyme characterization, engineering and cofactor immobilization.
【24h】

Thermotoga maritima glycerol dehydrogenase as a catalyst for dihydroxyacetone production: Enzyme characterization, engineering and cofactor immobilization.

机译:滨海嗜热菌(Thermotoga maritima)甘油脱氢酶作为生产二羟基丙酮的催化剂:酶的表征,工程化和辅因子固定化。

获取原文
获取原文并翻译 | 示例

摘要

NAD-dependent dehydrogenases facilitate a diverse range of hydride transfer reactions in many areas of cellular metabolism. Dehydrogenases catalyze about 12% of metabolic reactions and are classified into 4 different groups: the medium-chain dehydrogenase superfamily, the short-chain dehydrogenase superfamily, the long-chain dehydrogenases, and the family III metal-dependent polyol dehydrogenases. The broad range of reactions catalyzed makes them attractive catalysts for synthetic process, especially since many produce chiral products. However, their use as catalysts has been limited by the requirement that the NAD cofactor be supplied in stoichiometric amounts. Enzymatic cofactor regeneration has been used for synthesis of high value products, but is not applicable to many processes because providing an extra enzyme increases costs. Electrochemical cofactor regeneration could be a lower cost alternative to enzymatic regeneration. Our overall goal is to immobilize Thermotoga maritima glycerol dehydrogenase (TmGlyDH) and its NAD cofactor onto an electrode for catalytic production of dihydroxyacetone (DHA) from glycerol where the electrode regenerates NAD+. Glycerol is a waste product of the biodiesel industry, while DHA is a more valuable synthetic precursor and sunless tanning agent.;TmGlyDH's kinetics, stability and activity were characterized to provide acceptable operating conditions for an electrochemical reactor. TmGlyDH showed cooperative rather than Michaelis-Menten kinetics with glycerol and DHA, so the Hill equation was used to determine limiting rate (V max), half saturating substrate concentration (K0.5) and Hill coefficient (n). The optimum pH for glycerol oxidation was 7.9. We tested alternative substrates similar to glycerol and TmGlyDH was able to produce 1,2-propanediol from hydroxyacetone at greater than 99% enantiomeric excess. To test if TmGlyDH can use immobilized NAD, the NAD analogue N6-carboxymethyl-NAD (N6-CM-NAD) was synthesized and immobilized on amino-linker-modified sepharose beads (NAD-sepharose). TmGlyDH had low activity with N6-CM-NAD and mutants were produced to increase activity with the NAD analog 10-fold, but both TmGlyDH mutants and wild-type showed similar activity with NAD-sepharose. The length of the linker between NAD and sepharose had no effect on coenzymic activity. To see if other dehydrogenases can use N6-immobilized NAD, we tested 6 different dehydrogenases and 5 of the 6 used NAD-sepharose as a cofactor; structural analysis of the enzymes binding pockets predicted activity with soluble N6-carboxymethyl-NAD, but not with NAD-sepharose.;In a catalytic system, the longevity of the catalyst is important because renewing the catalyst is costly. We observed that TmGlyDH gets inactivated by its product, DHA. TmGlyDH inactivation by DHA is a result of the enzyme getting modified by Maillard reactions between the Lys and Arg residues and DHA. We identified which Lys and Arg residues get modified by DHA and prepared mutants to improve stability in the presence of DHA. The mutant most stable to DHA at 50°C was K361Q, maintaining activity twice as long as the wild-type enzyme in the presence of DHA at 50°C.;In summary, TmGlyDH has been characterized and engineered towards use in a bioelectronic catalytic system. Our immobilization method of NAD is suitable for use by a wide variety of dehydrogenases, indicating a working bioelectronic system would be adaptable to many novel applications.
机译:NAD依赖的脱氢酶促进细胞代谢的许多领域中各种各样的氢化物转移反应。脱氢酶催化约12%的代谢反应,分为4个不同的组:中链脱氢酶超家族,短链脱氢酶超家族,长链脱氢酶和III类金属依赖性多元醇脱氢酶。催化反应的广泛范围使它们成为合成过程的有吸引力的催化剂,尤其是由于许多产生手性产物。但是,它们作为催化剂的用途受到了以化学计量的量提供NAD辅因子的要求的限制。酶促辅因子再生已用于合成高价值的产品,但不适用于许多过程,因为提供额外的酶会增加成本。电化学辅因子再生可能是酶再生的低成本替代方案。我们的总体目标是将马氏热球菌甘油脱氢酶(TmGlyDH)及其NAD辅因子固定在电极上,以从甘油催化生产二羟基丙酮(DHA),使该电极再生NAD +。甘油是生物柴油工业的废品,而DHA是更有价值的合成前体和免晒美黑剂。TmGlyDH的动力学,稳定性和活性可为电化学反应器提供可接受的操作条件。 TmGlyDH与甘油和DHA表现出协同作用而不是Michaelis-Menten动力学,因此使用Hill方程确定极限速率(V max),一半饱和底物浓度(K0.5)和Hill系数(n)。甘油氧化的最佳pH为7.9。我们测试了与甘油相似的替代底物,TmGlyDH能够以大于99%的对映体过量从羟丙酮生产1,2-丙二醇。为了测试TmGlyDH是否可以使用固定的NAD,合成了NAD类似物N6-羧甲基-NAD(N6-CM-NAD)并固定在氨基接头修饰的琼脂糖珠(NAD-琼脂糖)上。 TmGlyDH对N6-CM-NAD的活性较低,产生了突变体以增加NAD类似物10倍的活性,但TmGlyDH突变体和野生型均与NAD-琼脂糖具有相似的活性。 NAD和琼脂糖之间的接头长度对辅酶活性没有影响。为了查看其他脱氢酶是否可以使用固定N6的NAD,我们测试了6种不同的脱氢酶,并在6种NAD-琼脂糖中使用了5种作为辅因子。酶结合口袋的结构分析预测了可溶的N6-羧甲基-NAD的活性,而NAD-琼脂糖则没有。在催化系统中,催化剂的寿命很重要,因为更新催化剂的成本很高。我们观察到TmGlyDH被其产品DHA灭活。 DHA使TmGlyDH失活是酶被Lys和Arg残基与DHA之间的美拉德反应修饰的结果。我们确定了DHA修饰了哪些Lys和Arg残基,并制备了在DHA存在下提高稳定性的突变体。在50°C时对DHA最稳定的突变体是K361Q,在50°C时存在DHA的情况下保持的活性是野生型酶的两倍。总而言之,TmGlyDH已被表征并设计用于生物电子催化系统。我们的NAD固定化方法适用于多种脱氢酶,这表明有效的生物电子系统将适用于许多新型应用。

著录项

  • 作者

    Beauchamp, Justin Liam.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Chemistry Biochemistry.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号