首页> 外文期刊>Procedia Computer Science >Novel Classification Method of Spikes Morphology in EEG Signal Using Machine Learning
【24h】

Novel Classification Method of Spikes Morphology in EEG Signal Using Machine Learning

机译:基于机器学习的脑电信号尖峰形态分类新方法

获取原文

摘要

Since its invention in 1929 by Hans Berger, the electroencephalography (EEG) is the subject of several researches by its importance in the understanding of epilepsy in general and particularly in the diagnosis but especially in the near-surgical evaluation of the disease. EEG is a signal acquisition tool from cerebral electrical discharges. Recently Khouma [1] has proposed a tool to detect the Interictical Paroxystic Events (IPE) or spikes in EEG signals. In this paper, we propose a new classification method of spikes morphology based on the Support Vector Machines (SVM). The SVM is a supervised classification method using kernel functions. It is a powerful technique and particularly useful for data whose distribution is unknown (EEG signals). We apply this technique to identify the different spikes morphologies in EEG signals. Different kernel functions (linear, polynomial, radial and sigmoidal) are used for experimental. Automatic treatment for identification spikes morphology could improve the diagnosis of epilepsy.
机译:自从1929年由汉斯·伯格(Hans Berger)发明以来,脑电图(EEG)就以其在总体上了解癫痫症,尤其是在诊断疾病,尤其是在对该疾病的近乎外科手术评估中的重要性而成为多项研究的主题。脑电图是来自大脑放电的信号采集工具。最近,Khouma [1]提出了一种检测脑电信号发作性发作性事件(IPE)或峰值的工具。在本文中,我们提出了一种基于支持向量机(SVM)的峰值形态分类新方法。 SVM是使用内核函数的监督分类方法。这是一项强大的技术,对于分布未知的数据(EEG信号)特别有用。我们应用这项技术来识别脑电信号中的不同尖峰形态。实验使用了不同的核函数(线性,多项式,径向和S形)。识别尖峰形态的自动治疗可以改善癫痫的诊断。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号