首页> 外文期刊>Procedia Computer Science >Comparative Study of Various Feature Extraction Techniques for Pedestrian Detection
【24h】

Comparative Study of Various Feature Extraction Techniques for Pedestrian Detection

机译:行人检测中各种特征提取技术的比较研究

获取原文

摘要

This paper presents, feature extraction techniques such as center symmetric local binary pattern (CSLBP), extended CSLBP (XCSLBP), speeded-up robust feature (SURF) with 64 and 128 feature descriptors and histograms of oriented gradients (HOG) applied on a set of images from INRIA person database, to detect pedestrians. About fifteen feature sets created using different combinations of the aforementioned methods are compared using two detectors, random forest (RF) and support vector machine (SVM). Performance validation is done based on the accuracy, precision, recall and space required for storing feature vectors. Experimental results have shown that CSLBP and the novel XCSLBP+CSLBP feature sets yield 100% accuracy, when used with RF classifier, whereas, the novel SURF-128+XCSLBP combination and SVM linear classifier gave 99.2% accuracy in detecting pedestrians.
机译:本文介绍了特征提取技术,例如中心对称局部二进制模式(CSLBP),扩展CSLBP(XCSLBP),具有64和128个特征描述符的加速鲁棒特征(SURF)以及应用于集合的定向梯度直方图(HOG) INRIA人数据库中的图像,以检测行人。使用两个检测器(随机森林(RF)和支持向量机(SVM))比较使用上述方法的不同组合创建的大约15个特征集。性能验证是基于存储特征向量所需的准确性,精度,召回率和空间来进行的。实验结果表明,当与射频分类器一起使用时,CSLBP和新颖的XCSLBP + CSLBP功能集可产生100%的准确度,而新颖的SURF-128 + XCSLBP组合和SVM线性分类器在检测行人时的准确度则为99.2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号