首页> 外文期刊>Procedia Computer Science >Investigating the use of random forest in software effort estimation
【24h】

Investigating the use of random forest in software effort estimation

机译:研究在软件工作量估计中使用随机森林

获取原文

摘要

Over the last two decades, there has been an important increase in studies dealing with the software development effort estimation (SDEE) using machine learning (ML) techniques that aimed to improve the accuracy of the estimates and to understand the process used to generate these estimates. Among these ML techniques, decision tree-based models have received a considerable scholarly attention thanks to their generalization ability and understandability. However, very few studies have investigated the use of random forest (RF) in software effort estimation. In this paper, a RF model is designed and optimized empirically by varying the values of its key parameters. The performance of the RF is compared with that of classical regression tree (RT). The evaluation was performed through the 30% hold-out validation method using three datasets: ISBSG R8, Tukutuku and COCOMO. To identify the most accurate techniques, we used three widely known accuracy measures: Pred(0.25), MMRE and MdMRE. The results show that the optimized random forest outperforms the regression trees model on all evaluation criteria.
机译:在过去的二十年中,使用机器学习(ML)技术处理软件开发工作量估计(SDEE)的研究有了重要的增长,旨在提高估计的准确性并了解生成这些估计的过程。在这些机器学习技术中,基于决策树的模型由于其泛化能力和易懂性而受到了学术界的广泛关注。但是,很少有研究调查在软件工作量估计中使用随机森林(RF)的情况。在本文中,通过更改关键参数的值,对RF模型进行了经验设计和优化。将RF的性能与经典回归树(RT)的性能进行比较。通过使用三个数据集:ISBSG R8,Tukutuku和COCOMO的30%保留验证方法进行了评估。为了确定最准确的技术,我们使用了三种广为人知的精度度量:Pred(0.25),MMRE和MdMRE。结果表明,在所有评估标准上,优化后的随机森林均优于回归树模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号