首页> 外文期刊>Procedia Computer Science >Upper Bounds for Rainbow 2-Connectivity of the Cartesian Product of a Path and a Cycle
【24h】

Upper Bounds for Rainbow 2-Connectivity of the Cartesian Product of a Path and a Cycle

机译:路径和循环的笛卡尔积的Rainbow 2-连通性的上限

获取原文

摘要

A path P in an edge-colored graph G where adjacent edges may be colored the same is said to be a rainbow path, if its edges have distinct colors. For a κ-connected graph G and an integer k with 1 ≤ k ≤ κ, the rainbow k -connectivity, rck ( G ) of G is defined as the minimum integer j for which there exists a j -edge-coloring of G such that every two distinct vertices of G are connected by k internally disjoint rainbow paths. In this paper, we determine upper bounds for rainbow 2-connectivity of the Cartesian product of two paths and the Cartesian product of a cycle and a path.
机译:如果边缘着色的图形G中的相邻边缘可能具有相同的颜色,则该边缘着色的图形G中的路径P如果其边缘具有不同的颜色,则称为彩虹路径。对于一个κ连通图G和一个1≤k≤κ的整数k,G的彩虹k连通性rck(G)被定义为存在G的aj边缘着色的最小整数j G的每两个不同的顶点通过k条内部不相交的彩虹路径相连。在本文中,我们确定两条路径的笛卡尔乘积以及一个循环和一条路径的笛卡尔积的彩虹2连通性的上限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号