...
首页> 外文期刊>RSC Advances >Engineered ridge and micropillar array detectors to quantify the directional migration of fibroblasts
【24h】

Engineered ridge and micropillar array detectors to quantify the directional migration of fibroblasts

机译:工程化的脊和微柱阵列检测器可量化成纤维细胞的定向迁移

获取原文

摘要

Cell migrations on substrates are important in diverse processes such as wound healing, embryogenesis, and pathologies like cancer metastasis. An understanding of the cellular mechanobiology during migration requires development of suitable engineering platforms to better represent the anisotropic in vivo cellular environment and measure traction forces due to cell adhesion. We fabricated a custom elastomeric micropillar array detector (mPAD), comprised of alternate ridge and pillar topographical features, using a lithographic fabrication method that creates an anisotropic microenvironment and also permits the measurement of traction forces. We used the finite element method to compare predictions of calculated tractions for pillar geometries with different aspect ratios using linear and nonlinear constitutive models. These simulations showed the importance of pillar aspect ratios and constitutive models in computing resulting tractions. We cultured 3T3 fibroblasts on the engineered mPAD and characterized cellular migrations over a three hour period. Our results show highly elongated cellular and nuclear morphologies on the mPAD substrates as compared to cells cultured on control elastomeric substrates. Cells on mPADs demonstrated persistent directional motion along ridges as compared to random movements on control substrates. These results showed the importance of substrate anisotropy in the alignment of fibroblasts on mPAD. We also measured differences in the cellular tractions along the length of the cell on mPAD substrates. Engineered mPADs are hence useful in directing cellular motions and in delineating mechanobiological processes during adhesion and migration.
机译:基质上的细胞迁移在诸如伤口愈合,胚胎发生和癌症转移等病理过程中很重要。对迁移过程中细胞力学生物学的理解要求开发合适的工程平台,以更好地表示各向异性的“体内”细胞环境并测量由于细胞粘附而产生的牵引力。我们使用光刻制造方法制造了一种定制的弹性微柱阵列检测器(mPAD),该检测器由交替的脊和柱形地形特征组成,该方法可以产生各向异性的微环境,并且还可以测量牵引力。我们使用有限元方法,使用线性和非线性本构模型,比较了不同长宽比的支柱几何计算的牵引力预测。这些模拟显示了支柱纵横比和本构模型在计算牵引力中的重要性。我们在改造的mPAD上培养了3T3成纤维细胞,并在三个小时内表征了细胞迁移。我们的结果显示,与在对照弹性体基质上培养的细胞相比,mPAD基质上的细胞和核形态高度伸长。与对照基质上的随机运动相比,mPAD上的细胞表现出沿脊的持续定向运动。这些结果表明,在mPAD上成纤维细胞的排列中,底物各向异性的重要性。我们还测量了在mPAD基材上沿细胞长度的细胞牵引力的差异。因此,工程化的mPAD可用于指导细胞运动以及描绘粘着和迁移过程中的机械生物学过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号