首页> 外文期刊>Nature Communications >Microscopic mechanisms of deformation transfer in high dynamic range branched nanoparticle deformation sensors
【24h】

Microscopic mechanisms of deformation transfer in high dynamic range branched nanoparticle deformation sensors

机译:高动态范围分支纳米颗粒形变传感器中形变传递的微观机制

获取原文
           

摘要

Nanoscale stress sensing is of crucial importance to biomechanics and other fields. An ideal stress sensor would have a large dynamic range to function in a variety of materials spanning orders of magnitude of local stresses. Here we show that tetrapod quantum dots (tQDs) exhibit excellent sensing versatility with stress-correlated signatures in a multitude of polymers. We further show that tQDs exhibit pressure coefficients, which increase with decreasing polymer stiffness, and vary 3 orders of magnitude. This high dynamic range allows tQDs to sense in matrices spanning 4 orders of magnitude in Young’s modulus, ranging from compliant biological levels (~100?kPa) to stiffer structural polymers (~5?GPa). We use ligand exchange to tune filler-matrix interfaces, revealing that inverse sensor response scaling is maintained upon significant changes to polymer-tQD interface chemistry. We quantify and explore mechanisms of polymer-tQD strain transfer. An analytical model based on Mori-Tanaka theory presents agreement with observed trends.
机译:纳米级应力感测对于生物力学和其他领域至关重要。理想的应力传感器应具有较大的动态范围,以在跨越局部应力量级的多种材料中发挥作用。在这里,我们表明四脚架量子点(tQDs)在多种聚合物中都具有出色的传感通用性,并且具有应力相关的特征。我们进一步表明,tQD表现出的压力系数随聚合物刚度的降低而增加,并且变化> 3个数量级。这种高动态范围使tQD可以在杨氏模量范围大于4个数量级的矩阵中进行感应,范围从顺应性生物学水平(〜100?kPa)到更坚硬的结构聚合物(〜5?GPa)。我们使用配体交换来调整填充物-基质界面,揭示了对聚合物-tQD界面化学性质的重大改变后,传感器的响应反比例得以保持。我们量化和探索聚合物tQD应变转移的机制。基于森-田中理论的分析模型表明与观察到的趋势一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号