首页> 外文期刊>Nature Communications >Catalytic mechanism and molecular engineering of quinolone biosynthesis in dioxygenase AsqJ
【24h】

Catalytic mechanism and molecular engineering of quinolone biosynthesis in dioxygenase AsqJ

机译:双加氧酶AsqJ催化喹诺酮生物合成的机理和分子工程

获取原文
           

摘要

The recently discovered FeII/α-ketoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans stereoselectively catalyzes a multistep synthesis of quinolone alkaloids, natural products with significant biomedical applications. To probe molecular mechanisms of this elusive catalytic process, we combine here multi-scale quantum and classical molecular simulations with X-ray crystallography, and in vitro biochemical activity studies. We discover that methylation of the substrate is essential for the activity of AsqJ, establishing molecular strain that fine-tunes π-stacking interactions within the active site. To rationally engineer AsqJ for modified substrates, we amplify dispersive interactions within the active site. We demonstrate that the engineered enzyme has a drastically enhanced catalytic activity for non-methylated surrogates, confirming our computational data and resolved high-resolution X-ray structures at 1.55?? resolution. Our combined findings provide crucial mechanistic understanding of the function of AsqJ and showcase how combination of computational and experimental data enables to rationally engineer enzymes.
机译:最近发现的来自构巢曲霉的FeII /α-酮戊二酸依赖性双加氧酶AsqJ立体选择性催化喹诺酮生物碱的多步合成,这是具有重要生物医学应用的天然产物。为了探究这种难以捉摸的催化过程的分子机理,我们在这里将多尺度量子和经典分子模拟与X射线晶体学相结合,并进行体外生化活性研究。我们发现底物的甲基化对于AsqJ的活性至关重要,建立了微调活性位点内π堆积相互作用的分子菌株。为了合理地设计用于修饰底物的AsqJ,我们放大了活性位点内的分散相互作用。我们证明该工程酶对非甲基化替代物具有显着增强的催化活性,证实了我们的计算数据并在1.55 -1处解析了高分辨率的X射线结构。解析度。我们的综合发现提供了对AsqJ功能的关键机理的理解,并展示了计算数据和实验数据的组合如何使理性地设计酶成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号