...
首页> 外文期刊>Molecular and Cellular Biology >Simultaneous Mutation of Methylated Lysine Residues in Histone H3 Causes Enhanced Gene Silencing, Cell Cycle Defects, and Cell Lethality in Saccharomyces cerevisiae
【24h】

Simultaneous Mutation of Methylated Lysine Residues in Histone H3 Causes Enhanced Gene Silencing, Cell Cycle Defects, and Cell Lethality in Saccharomyces cerevisiae

机译:组蛋白H3中甲基化赖氨酸残基的同时突变导致酿酒酵母中增强的基因沉默,细胞周期缺陷和细胞致死性。

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The methylation of specific lysine residues in histone H3 is integral to transcription regulation; however, little is known about how combinations of methylated lysine residues act in concert to regulate genome-wide transcription. We have systematically mutated methylated histone lysine residues in yeast and found that the triple mutation of H3K4, H3K36, and H3K79 to arginine (H3 K4,36,79R) is lethal. The histone H3 K4,36,79R mutant causes a mitotic cell cycle delay and a progressive transcription defect that initiates in telomere regions and then spreads into the chromosome. This effect is mediated by the silent information regulator (SIR) silencing complex, as we observe increased binding of the SIR complex to genomic regions adjacent to yeast telomeres in the H3 K4,36,79R mutant and deletion of SIR2, SIR3, or SIR4 rescues the lethal phenotype. Curiously, a yeast strain in which the histone methyltransferase genes are simultaneously deleted is viable. Indeed, deletion of the histone methyltransferase genes can suppress the H3 K4,36,79R lethal phenotype. These and other data suggest that the cause of lethality may in part be due to the association of histone methyltransferase enzymes with a histone substrate that cannot be methylated.
机译:组蛋白H3中特定赖氨酸残基的甲基化是转录调控所不可或缺的。然而,人们对甲基化赖氨酸残基的组合如何协同调节全基因组转录的了解甚少。我们已经系统地突变了酵母中甲基化的组蛋白赖氨酸残基,发现将H3K4,H3K36和H3K79的三重突变为精氨酸(H3 K4,36,79R)具有致命性。组蛋白H3 K4,36,79R突变体导致有丝分裂细胞周期延迟和进行性转录缺陷,该缺陷始于端粒区域,然后扩散到染色体中。此作用是由沉默信息调节剂(SIR)沉默复合体介导的,因为我们观察到SIR复合体与H3 K4,36,79R突变体中与酵母端粒相邻的基因组区域的结合增加,并且 SIR2 SIR3 SIR4 可挽救致命的表型。奇怪的是,其中组蛋白甲基转移酶基因同时缺失的酵母菌株是可行的。确实,组蛋白甲基转移酶基因的缺失可以抑制H3 K4,36,79R致死表型。这些和其他数据表明,致死性的原因可能部分是由于组蛋白甲基转移酶与不能被甲基化的组蛋白底物的缔合所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号