首页> 外文期刊>EPJ Web of Conferences >Combined study of evaporation from liquid surface by background oriented schlieren, infrared thermal imaging and numerical simulation
【24h】

Combined study of evaporation from liquid surface by background oriented schlieren, infrared thermal imaging and numerical simulation

机译:通过背景定向的纹影,红外热成像和数值模拟相结合的方法研究液体表面蒸发

获取原文
           

摘要

Temperature fields in evaporating liquids are measured by simultaneous use of Background Oriented Schlieren (BOS) technique for the side view and IR thermal imaging for the surface distribution. Good agreement between the two methods is obtained with typical measurement error less than 0.1 K. Two configurations of surface layer are observed: thermocapillary convection state with moving liquid surface and small thermal cells, associated with Marangoni convection, and “cool skin” with negligible velocity at the surface, larger cells and dramatic increase of velocity within 0.1 mm layer beneath the surface. These configurations are shown to be formed in various liquids (water with various degrees of purification, ethanol, butanol, decane, kerosene, glycerine) depending rather on initial conditions and ambient parameters than on the liquid. Water, which has been considered as the liquid without observable Marangoni convection, actually can exhibit both kinds of behavior during the same experimental run. Evaporation is also studied by means of numerical simulations. Separate problemsin air and liquid are considered, with thermal imaging data of surface temperature making the separation possible. It is shown that evaporation rate can be predicted by numerical simulation of the air side with appropriate boundary conditions. Comparison is made with known empirical correlations for Sherwood-Rayleigh relationship. Numerical simulations of water-side problem reveal the issue of velocity boundary conditions at the free surface, determining the structure of surface layer. Flow field similar to observed in the experiments is obtained with special boundary conditions of third kind, presenting a combination of no-slip and surface tension boundary conditions.
机译:蒸发液体中的温度场是通过同时使用背景定向Schlieren(BOS)技术进行侧视图和使用IR热成像进行表面分布测量的。两种方法之间具有良好的一致性,典型的测量误差小于0.1K。观察到了两种表面层配置:具有移动的液体表面的热毛细管对流状态和与Marangoni对流相关的小型热室以及速度可忽略的“冷皮”在表面下,较大的单元和表面下方0.1 mm层内的速度急剧增加。这些构型显示是在各种液体(具有不同纯化度的水,乙醇,丁醇,癸烷,煤油,甘油)中形成的,而不是取决于初始条件和环境参数,而取决于液体。水被认为是没有可观察到的马兰戈尼对流的液体,实际上在同一实验过程中会表现出两种行为。还通过数值模拟研究了蒸发。考虑到空气和液体中的单独问题,表面温度的热成像数据使分离成为可能。结果表明,在适当的边界条件下,可以通过空气侧的数值模拟来预测蒸发速率。比较与Sherwood-Rayleigh关系的已知经验相关性。水侧问题的数值模拟揭示了自由表面速度边界条件的问题,决定了表面层的结构。在第三种特殊边界条件下获得了与实验中观察到的相似的流场,呈现出无滑移和表面张力边界条件的组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号