首页> 外文期刊>International Journal of Molecular Sciences >Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence
【24h】

Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence

机译:电磁能对生命系统中蛋白质分子通过生物分子转运的影响及其实验证据

获取原文
           

摘要

The influences of electromagnetic fields (EMFs) on bio-energy transport and its mechanism of changes are investigated through analytic and numerical simulation and experimentation. Bio-energy transport along protein molecules is performed by soliton movement caused by the dipole–dipole electric interactions between neighboring amino acid residues. As such, EMFs can affect the structure of protein molecules and change the properties of the bio-energy transported in living systems. This mechanism of biological effect from EMFs involves the amino acid residues in protein molecules. To study and reveal this mechanism, we simulated numerically the features of the movement of solitons along protein molecules with both a single chain and with three channels by using the Runge–Kutta method and Pang’s soliton model under the action of EMFs with the strengths of 25,500, 51,000, 76,500, and 102,000 V/m in the single-chain protein, as well as 17,000, 25,500, and 34,000 V/m in the three-chain protein, respectively. Results indicate that electric fields (EFs) depress the binding energy of the soliton, decrease its amplitude, and change its wave form. Also, the soliton disperses at 102,000 V/m in a single-chain protein and at 25,500 and 34,000 V/m in three-chain proteins. These findings signify that the influence of EMFs on the bio-energy transport cannot be neglected; however, these variations depend on both the strength and the direction of the EF in the EMF. This direction influences the biological effects of EMF, which decrease with increases in the angle between the direction of the EF and that of the dipole moment of amino acid residues; however, randomness at the macroscopic level remains. Lastly, we experimentally confirm the existence of a soliton and the validity of our conclusion by using the infrared spectra of absorption of the collagens, which is activated by another type of EF. Thus, we can affirm that both the described mechanism and the corresponding theory are correct and that EMFs or EFs can influence the features of energy transport in living systems and thus have certain biological effects.
机译:通过解析,数值模拟和实验研究了电磁场(EMFs)对生物能量传输的影响及其变化机理。沿着蛋白质分子的生物能量传输是由相邻氨基酸残基之间的偶极-偶极电相互作用引起的孤子运动来实现的。这样,EMF可以影响蛋白质分子的结构并改变在生命系统中运输的生物能的特性。 EMF的这种生物学效应机制涉及蛋白质分子中的氨基酸残基。为了研究和揭示这种机制,我们使用Runge–Kutta方法和Pang孤子模型在强度为25,500的EMF作用下,数值模拟了孤子沿单链和三通道蛋白分子沿着蛋白质分子运动的特征。单链蛋白分别为51,000、76,500和102,000 V / m,三链蛋白分别为17,000、25,500和34,000 V / m。结果表明,电场(EFs)降低了孤子的结合能,降低了其振幅,并改变了其波形。同样,孤子在单链蛋白中的分散速度为102,000 V / m,在三链蛋白中的分散速度为25,500和34,000 V / m。这些发现表明,电磁场对生物能量传输的影响不可忽略。但是,这些变化取决于EMF中EF的强度和方向。这个方向影响EMF的生物学效应,随着EF方向和氨基酸残基偶极矩之间的夹角的增加而减小。但是,宏观层面的随机性仍然存在。最后,我们通过使用吸收胶原蛋白的红外光谱(由另一种类型的EF激活),通过实验确认了孤子的存在和结论的有效性。因此,我们可以肯定所描述的机制和相应的理论都是正确的,并且电动势或电动势可以影响生命系统中能量传输的特征,因此具有一定的生物学效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号