首页> 外文期刊>IFAC PapersOnLine >The impact of experimental data quality on computational systems biology and engineering
【24h】

The impact of experimental data quality on computational systems biology and engineering

机译:实验数据质量对计算系统生物学和工程学的影响

获取原文
获取外文期刊封面目录资料

摘要

Abstract: The success of computational methods in systems biology and systems engineering relies on the availability of mathematical models which represent the biological system adequately The process of model development, model analysis and model invalidation is, however, often limited by the availability of suitable experimental data leading to impaired significances of the models. Especially mathematical models build for the purpose of process control, optimization and analysis have to represent and predict the behavior of the system very well. But how to generate experimental data which is suitable for computational systems biology and engineering? In this work we demonstrate that the close connected use of experimental and theoretical methods can be the key for deriving experimental data and mathematical models of a high quality. As a first step the experimental conditions which cause the desired systems behavior have to be identified and maintained. Poor process control strategies or a general lack of control engineering are often the bottleneck, impeding a systematic experimental approach. Here we show, by applying methods from bioengineering, systems biology and control engineering, how an experimental platform can be created which allows to address systems biological questions systematically. The shown approach stabilizes the process around a chosen working point so that the reaction of the system to a defined stimulation of an input can be monitored whilst the remaining process variables are kept constant. In that way dynamic system responses can be assigned to the change of a single input and hierarchical information of complex biological systems are revealed. In this work we use our approach to study the formation of photosynthetic membranes (PM) under microaerobic conditions in Rhodospirillum rubrum.
机译:摘要:系统生物学和系统工程中计算方法的成功依赖于能够充分代表生物系统的数学模型的可用性。然而,模型开发,模型分析和模型失效的过程通常受限于合适的实验数据的可用性导致模型的意义受损。特别是为了过程控制,优化和分析而建立的数学模型必须很好地表示和预测系统的行为。但是如何生成适合计算系统生物学和工程学的实验数据呢?在这项工作中,我们证明了紧密结合使用实验和理论方法可能是获得高质量实验数据和数学模型的关键。第一步,必须确定并维持导致所需系统行为的实验条件。流程控制策略不佳或控制工程普遍缺乏通常是瓶颈,阻碍了系统的实验方法。在这里,我们展示了通过应用生物工程,系统生物学和控制工程的方法,如何创建一个实验平台,该平台可以系统地解决系统生物学问题。所示方法可在选定的工作点附近稳定过程,以便可以监视系统对输入的定义刺激的反应,而其余过程变量保持恒定。这样,可以将动态系统响应分配给单个输入的更改,从而揭示复杂生物系统的层次信息。在这项工作中,我们使用我们的方法来研究红螺螺旋藻在微需氧条件下光合膜(PM)的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号