...
首页> 外文期刊>Astronomy and astrophysics >Photodesorption and physical properties of CO ice as a function of temperature
【24h】

Photodesorption and physical properties of CO ice as a function of temperature

机译:CO冰的光解吸和物理性质随温度的变化

获取原文
           

摘要

Context. Ice photodesorption has been the topic of recent studies that aim to interpret the abundances of gas-phase molecules, in particular CO, toward cold interstellar regions. But little is known about the effect of the ice’s physical properties on the photodesorption rate. The linear decrease observed in the photodesorption rate, as a function of increasing CO ice deposition temperature, was provisionally attributed to a more compact CO ice structure. Aims. The goal of this work is to monitor the physical properties of solid CO as a function of ice deposition temperature. Then, we evaluate the possible link between the structure of ice and the ice’s photodesorption rate. Methods. Infrared spectroscopy is an efficient tool to monitor the structural evolution of pure ices during warm-up or irradiation. The infrared absorption bands of molecular ice components observed toward various space environments allow for the detection of H _(2) O, CO, CO _(2) , CH _(3) OH, NH _(3) , etc. Typically, a pure ice that is composed of one of these species displays significant changes in their mid-infrared band profiles as a result of warm-up. But, at most, only very subtle changes appear in the narrow CO ice infrared absorption band as the result of warm-up. We, therefore, also used vacuum-ultraviolet spectroscopy of CO ice to monitor the effect of temperature in the physical properties of the ice. Finally, temperature-programmed desorption and photo-desorption experiments for different CO ice deposition temperatures were performed. Results. Mid-infrared and vacuum-ultraviolet spectroscopy showed that warm-up of CO ice that is deposited at 8 K did not lead to structural changes. Only CO ice samples deposited at temperatures above 20 K displayed different spectroscopic properties compared to lower deposition temperatures. The observed gradual and linear drop in the photodesorption rate of CO ice, as a function of increasing ice deposition temperature in the 7 to 20 K range, is, therefore, not due to a gradual re-structuring toward a more compact and crystalline ice, which is only triggered above 20 K and increases for higher deposition temperatures. Conclusions. We suggest that this decrease of the photodesorption rate is related to the disorder of CO dipole molecules within the amorphous or glassy state, which influences the necessary transfer of photon energy from the first excited molecule to the desorbing molecule on the ice surface. The photodesorption yield of CO deposited at 20 K is about four times lower than at 7 K. Dust models should adopt CO photodesorption yields that are compatible with the thermal history of the cloud.
机译:上下文。冰的光解吸一直是最近研究的主题,旨在解释气相分子,特别是向寒冷星际区的CO的丰度。但是对于冰的物理性质对光解吸速率的影响知之甚少。观察到的光解吸速率的线性下降与增加的CO冰沉积温度有关,暂时归因于更紧凑的CO冰结构。目的这项工作的目的是监测固态CO的物理性质与冰沉积温度的关系。然后,我们评估冰的结构与冰的光解吸速率之间的可能联系。方法。红外光谱是监视预热或辐射过程中纯冰结构演变的有效工具。朝着各种空间环境观察到的分子冰组分的红外吸收带可以检测H _(2)O,CO,CO _(2),CH _(3)OH,NH _(3)等。通常,由这些物质之一组成的纯冰由于预热而在其中红外波段轮廓上显示出显着变化。但是,由于预热,在​​狭窄的CO冰红外吸收带中最多只能出现非常细微的变化。因此,我们还使用了CO冰的真空紫外光谱技术来监测温度对冰的物理性质的影响。最后,针对不同的CO冰沉积温度进行了程序升温解吸和光解吸实验。结果。中红外和真空紫外光谱显示,在8 K处沉积的CO冰的预热不会导致结构变化。与较低的沉积温度相比,仅在高于20 K的温度下沉积的CO冰样品显示出不同的光谱特性。因此,观察到的CO冰的光解吸速率的逐渐和线性下降,是随着冰沉积温度在7到20 K范围内的升高而变化的,这并不是由于逐渐向着更致密和结晶的冰结构转变,仅在20 K以上触发,并在较高的沉积温度下增加。结论。我们认为光解吸速率的这种降低与非晶态或玻璃态中的CO偶极子分子的无序有关,这影响了光子能量从第一个受激分子到冰表面上解吸分子的必要转移。在20 K时沉积的CO的光解吸产率比在7 K时低约四倍。灰尘模型应采用与云的热历史兼容的CO光解吸率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号