首页> 中国专利> 一种煤吸附解吸过程中温度变化测量实验装置及方法

一种煤吸附解吸过程中温度变化测量实验装置及方法

摘要

本发明属于煤矿瓦斯突出灾害防治领域,具体是一种煤吸附解吸过程中温度变化测量实验装置及方法。包括高压甲烷气瓶、高压氦气瓶、参考罐和样品罐,参考罐分别与高压甲烷气瓶、样品罐和真空泵连接,高压气瓶与参考罐之间的管路上设有减压阀和1号阀门,样品罐与参考罐之间设有2号阀门,真空泵与参考罐之间设有5号阀门和真空表,参考罐、样品罐和真空泵通过三通阀门连接,样品罐接三通阀门的进口,参考罐和真空泵接三通阀门的出口,参考罐上设有1号压力表,样品罐通过3号阀门与2号压力表连接,1号温度传感器、2号温度传感器、3号温度传感器和4号温度传感器与温度记录仪连接,温度记录仪将数据传至计算机。

著录项

  • 公开/公告号CN112198083A

    专利类型发明专利

  • 公开/公告日2021-01-08

    原文格式PDF

  • 申请/专利权人 太原理工大学;

    申请/专利号CN202010813411.8

  • 发明设计人 高涛;邓存宝;韩青;

    申请日2020-08-13

  • 分类号G01N7/04(20060101);G01K1/022(20210101);G01L19/00(20060101);

  • 代理机构14110 太原晋科知识产权代理事务所(特殊普通合伙);

  • 代理人任林芳

  • 地址 030024 山西省太原市迎泽西大街79号

  • 入库时间 2023-06-19 09:29:07

说明书

技术领域

本发明属于煤矿瓦斯突出灾害防治领域,具体是一种煤吸附解吸过程中温度变化测量实验装置及方法。

背景技术

随着矿井不断向深部延伸,瓦斯突出灾害日趋严重。大量井下实际情况和瓦斯突出模拟实验证明,瓦斯突出前会发生温度变化。因此,很对学者提出将煤体温度变化作为瓦斯突出的预测指标。但目前对于煤体的温度变化规律以及瓦斯突出的机理尚未明确。

煤体中瓦斯气体赋存状态的变化即吸附和解吸对突出的形成有着重要的影响。因此在瓦斯突出的研究中,气体的吸附和解吸机理研究都是一个十分必要的基础课题。国内外学者一直很重视这方面的研究,也进行了大量的吸附解吸实验以及理论研究,并取得了很多成果。目前针对煤吸附解吸过程中的温度变化的研究,主要是基于多种实验条件下的等温吸附实验,并通过接触或非接触的方式来测量煤中气体吸附解吸过程中的温度变化,从而揭示煤与瓦斯突出机理。但是这些研究所用的实验装置在温度测试过程中,吸附罐内煤样受到外界恒温室环境温度的影响较大,导致温度值的测量误差大;而且由于注气和排气过程中气体压缩和膨胀作用的存在,会产生热效应,从而造成煤样温度发生变化。这些外界因素的存在,导致现有实验装置测得的温度值并非仅因气体吸附和解吸作用而引起的温度变化值,进而不能准确揭示煤吸附解吸过程中的温度变化规律。因此,需要设计一种能够准确测量煤吸附解吸过程中温度变化的实验装置,提出测量煤吸附解吸过程中温度变化规律的方法。

发明内容

本发明为了可以准确测量煤吸附解吸过程中的温度变化值,解决对吸附解吸机理的完善以及煤与瓦斯突出灾害的防治的问题,提供一种煤吸附解吸过程中温度变化测量实验装置及方法。

本发明采取以下技术方案:一种煤吸附解吸过程中温度变化测量实验装置,包括高压甲烷气瓶、高压氦气瓶、参考罐和样品罐,参考罐分别与高压甲烷气瓶、样品罐和真空泵连接,高压气瓶与参考罐之间的管路上设有减压阀和1号阀门,样品罐与参考罐之间设有2号阀门,真空泵与参考罐之间设有5号阀门和真空表,参考罐、样品罐和真空泵通过三通阀门连接,样品罐接三通阀门的进口,参考罐和真空泵接三通阀门的出口,参考罐上设有1号压力表,样品罐通过3号阀门与2号压力表连接,1号温度传感器、2号温度传感器、3号温度传感器和4号温度传感器与温度记录仪连接,温度记录仪将数据传至计算机。

进一步的,3号温度传感器贴在参考罐外侧壁中间位置;所述的 4号传感器贴在样品罐外侧壁中间位置;所述的样品罐顶部中心两侧等距安装两个卡套直通接头,1号温度传感器和2号温度传感器穿过卡套直通接头,分别测量样品罐内样品上部和下部的温度,使用RTV 硅橡胶和环氧树脂AB胶密封卡套直通接头。

进一步的,参考罐和样品罐由外保温层包裹。

进一步的,样品罐内壁贴有内部保温层。

进一步的,外部保温层为锡纸胶带包覆气凝胶毡,内部保温层为气凝胶毡。

一种煤吸附解吸过程中温度变化测量实验装置的实验方法,包括以下步骤,

S100~制备相同粒径的煤样和花岗岩样,烘干备用,并测量计算出煤样的密度为ρ

S200~将实验装置连接完成后,检测参考罐、样品罐和管路接口处的密封性;

S300~称取质量为m

接入高压氦气瓶,调节三通阀门,打开2号阀门和4号阀门,使样品罐和参考罐连通,调节减压阀,缓慢打开1号阀门进行氦气吹扫,一段时间后,关闭2号阀门和4号阀门,打开5号阀门,调节三通阀门使样品罐和真空泵连通,打开真空泵进行脱气,一段时间后,关闭5号阀门,调节减压阀,缓慢打开1号阀门进行充气,至参考罐压力稳定为P

式中,V

S400~将高压氦气瓶替换成高压甲烷气瓶,按照上述步骤进行样品罐的脱气处理后,关闭5号阀门,三通阀门调至样品罐和参考罐连通位置处,调节减压阀,缓慢打开1号阀门进行充气,待参考罐的压力值稳定至一定压力值,关闭1号阀门和减压阀,缓慢打开参考罐和样品罐间的2号阀门,打开3号阀门测量样品罐的压力,开始静置吸附过程,温度记录仪采集整个吸附过程中的温度变化值,进而可以计算出吸附过程中样品罐内温度传感器测得的煤样的温度变化最大值;

S500~吸附平衡后,关闭2号阀门,打开4号阀门,样品罐内气体直接排到大气,进行解吸,温度记录仪采集整个解吸过程中的温度变化值,进而可以计算出解吸过程中样品罐内温度传感器测得的煤样的温度变化最大值;

S600~选用不考虑吸附的花岗岩对样品罐进行了标定,排除气体压缩和膨胀的热效应。首先利用密度公式,计算出实验所需花岗岩样的质量m

烘干称取质量为m

式中,ΔT

与现有技术相比,本发明具有以下有益效果:

1、本发明通过采用导热性系数极小的气凝胶毡和锡纸胶带对参考罐和样品罐进行保温处理,降低了常规等温吸附实验中外界环境对样品罐内实验样品温度的影响,提高了测量的准确度。

2、本发明选用不考虑吸附的致密花岗岩对样品罐进行了标定,并提出了标定公式,降低了吸附解吸实验过程中,注气和排气时气体压缩和膨胀的热效应,提高了测量的准确度。

3、本发明通过以上两种方法,更加准确的测得了煤样仅因气体吸附/解吸而引起的温度变化数据,研究成果对吸附解吸机理的完善以及煤与瓦斯突出灾害的防治具有重要的参考价值。

附图说明

图1为本发明一种煤吸附解吸过程中温度变化测量实验装置的结构示意图;

图2为图1中样品罐的结构示意图;

图中,1-高压甲烷气瓶、2-减压阀、3-1号阀门、4-外保温层、5-参考罐、6-3号温度传感器、7-1号压力表、8-2号阀门、9-2号压力表、10-3 号阀门、11-4号阀门、12-1号温度传感器、13-4号温度传感器、14-2 号温度传感器、15-样品罐、16-温度记录仪、17-计算机、18-三通阀门、19-真空表、20-5号阀门、21-真空泵、22-高压氦气瓶、23-卡套直通接头、24-内保温层。

具体实施方式

如图1所示,一种煤吸附解吸过程中温度变化测量实验装置,包括高压气瓶1、参考罐5和样品罐15,参考罐5分别与高压气瓶1、样品罐15和真空泵21连接,高压气瓶1与参考罐5之间的管路上设有减压阀2和1号阀门3,样品罐15与参考罐5之间设有2号阀门 9,真空泵21与参考罐5之间设有5号阀门20和真空表19,参考罐 5、样品罐15和真空泵21通过三通阀门18连接,参考罐5上设有1 号压力表7,样品罐15通过3号阀门10与2号压力表9连接,样品罐15内部不同位置处分别安装有1号温度传感器12、2号温度传感器14和4号温度传感器13,1号温度传感器12、2号温度传感器 14、3号温度传感器6和4号温度传感器13与温度记录仪16连接,温度记录仪16将数据传至计算机17。

3号温度传感器6贴在参考罐5外侧壁中间位置;所述的4号传感器13贴在样品罐15外侧壁中间位置;所述的样品罐15顶部中心两侧等距安装两个卡套直通接头23,1号温度传感器12和2号温度传感器13穿过卡套直通接头,分别测量样品罐内样品上部和下部的温度,使用RTV硅橡胶和环氧树脂AB胶密封卡套直通接头。

参考罐5和样品罐15由外保温层4包裹。

样品罐15内壁贴有内部保温层24。

外部保温层4为锡纸胶带包覆气凝胶毡,内部保温层24为气凝胶毡。

一种煤吸附解吸过程中温度变化测量实验装置的实验方法,包括以下步骤。

S100~制备相同粒径的煤样和花岗岩样,烘干备用,并测量计算出煤样的密度为ρ

S200~将实验装置连接完成后,检测参考罐5、样品罐15和管路接口处的密封性;

S300~称取煤样放入样品罐15,敷设1号温度传感器12、2号温度传感器14、3号温度传感器6以及4号温度传感器13,用外保温层4包裹参考罐5和样品罐15,用高压氦气瓶进行样品罐15自由空间体积的标定。

自由空间体积标定的采用以下方法,接入高压氦气瓶,调节三通阀门18,打开2号阀门8和4号阀门11,使样品罐15和参考罐5连通,调节减压阀2,缓慢打开1号阀门3进行氦气吹扫,一段时间后,关闭2号阀门9和4号阀门11,打开5号阀门20,调节三通阀门18 使样品罐15和真空泵21连通,打开真空泵21进行脱气,一段时间后,关闭5号阀门20,调节减压阀2,缓慢打开1号阀门3进行充气,至参考罐压力稳定为P

式中,V

S400~将高压氦气瓶替换成高压甲烷气瓶,按照上述步骤进行样品罐的脱气处理后,关闭5号阀门20,三通阀门18调至样品罐15 和参考罐5连通位置处,调节减压阀2,缓慢打开1号阀门3进行充气,待参考罐5的压力值稳定至一定压力值,关闭1号阀门3和减压阀2,缓慢打开参考罐5和样品罐15间的2号阀门8,打开3号阀门 10测量样品罐15的压力,开始静置吸附过程,温度记录仪采集整个吸附过程中的温度变化值,进而可以计算出吸附过程中样品罐15内温度传感器测得的煤样的温度变化最大值。

S500~吸附平衡后,关闭2号阀门8,打开4号阀门11,样品罐内气体直接排到大气,进行解吸,温度记录仪采集整个解吸过程中的温度变化值,进而可以计算出解吸过程中样品罐内温度传感器测得的煤样的温度变化最大值;

S600~选用不考虑吸附的花岗岩对样品罐进行了标定,排除气体压缩和膨胀的热效应;首先利用密度公式,计算出实验所需花岗岩样的质量m

烘干称取质量为m

式中,ΔT

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号