...
首页> 外文期刊>Astronomy and astrophysics >Multiwavelength study of the flaring activity of Sagittarius A in 2014 February?April
【24h】

Multiwavelength study of the flaring activity of Sagittarius A in 2014 February?April

机译:2014年2月至4月人马座A喇叭口活动的多波长研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. The supermassive black hole named Sgr A * is located at the dynamical center of the Milky Way. This closest supermassive black hole is known to have a luminosity several orders of magnitude lower than the Eddington luminosity. Flares coming from the Sgr A * environment can be observed in infrared, X-ray, and submillimeter wavelengths, but their origins are still debated. Interestingly, the close passage of the Dusty S-cluster Object (DSO)/G2 near Sgr A * may increase the black hole flaring activity and could therefore help us to better constrain the radiation mechanisms from Sgr A * . Aims. Our aim is to study the X-ray, infrared, and radio flaring activity of Sgr A * close to the time of the DSO/G2 pericenter passage in order to constrain the physical properties and origin of the flares. Methods. Simultaneous observations were made with XMM-Newton and WFC3 onboard HST during the period Feb.–Apr. 2014, in addition to coordinated observations with SINFONI at ESO’s VLT, VLA in its A-configuration, and CARMA. Results. We detected two X-ray flares on 2014 Mar. 10 and Apr. 2 with XMM-Newton , three near-infrared (NIR) flares with HST on 2014 Mar. 10 and Apr. 2, and two NIR flares on 2014 Apr. 3 and 4 with VLT. The X-ray flare on 2014 Mar. 10 is characterized by a long rise ( ~ 7700 s) and a rapid decay ( ~ 844 s). Its total duration is one of the longest detected so far in X-rays. Its NIR counterpart peaked well before ( 4320 s) the X-ray maximum, implying a dramatic change in the X-ray-to-NIR flux ratio during this event. This NIR/X-ray flare is interpreted as either a single flare where variation in the X-ray-to-NIR flux ratio is explained by the adiabatic compression of a plasmon, or two distinct flaring components separated by 1.2 h with simultaneous peaks in X-rays and NIR. We identified an increase in the rising radio flux density at 13.37 GHz on 2014 Mar. 10 with the VLA that could be the delayed radio emission from a NIR/X-ray flare that occurred before the start of our observation. The X-ray flare on 2014 Apr. 2 occurred for HST during the occultation of Sgr A * by the Earth, therefore we only observed the start of its NIR counterpart. With NIR synchrotron emission from accelerated electrons and assuming X-rays from synchrotron self-Compton emission, the region of this NIR/X-ray flare has a size of 0.03 ? 7 times the Schwarzschild radius and an electron density of 10~(8.5) – 10~(10.2) cm ~(-3) , assuming a synchrotron spectral index of 0.3 ? 1.5. When Sgr A * reappeared to the HST view, we observed the decay phase of a distinct bright NIR flare with no detectable counterpart in X-rays. On 2014 Apr. 3, two 3.2-mm flares were observed with CARMA, where the first may be the delayed (4.4 h) emission of a NIR flare observed with VLT. Conclusions. We observed a total of seven NIR flares, with three having a detected X-ray counterpart. The physical parameters of the flaring region are less constrained for the NIR flare without a detected X-ray counterpart, but none of the possible radiative processes (synchrotron, synchrotron self-Compton, or inverse Compton) can be ruled out for the production of the X-ray flares. The three X-ray flares were observed during the XMM-Newton total effective exposure of ~256 ks . This flaring rate is statistically consistent with those observed during the 2012 Chandra XVP campaign, implying that no increase in the flaring activity was triggered close to the pericenter passage of the DSO/G2. Moreover, higher flaring rates had already been observed with Chandra and XMM-Newton without any increase in the quiescent level, showing that there is no direct link between an increase in the flaring rate in X-rays and the change in the accretion rate.
机译:上下文。名为Sgr A *的超大质量黑洞位于银河系的动力学中心。已知这种最接近的超质量黑洞的发光度比爱丁顿发光度低几个数量级。可以在红外,X射线和亚毫米波长下观察到来自Sgr A *环境的耀斑,但其起源尚有争议。有趣的是,尘埃S簇对象(DSO)/ G2在Sgr A *附近的近距离通过可能会增加黑洞的扩口活动,因此可以帮助我们更好地限制Sgr A *的辐射机制。目的我们的目的是研究Sgr A *的X射线,红外和放射火炬活动,接近DSO / G2中心点通过的时间,以限制火炬的物理性质和起源。方法。在2月至4月期间,使用HMM的XMM-Newton和WFC3进行了同时观测。 2014年,除了与EINFO的VLT,VLA的A配置和CARMA的SINFONI进行协调观测。结果。我们在2014年3月10日和4月2日用XMM-Newton检测了两个X射线耀斑,在2014年3月10日和4月2日检测到了3个HST近红外(NIR)耀斑,并在2014年4月3日检测了两个NIR耀斑。和4个带有VLT的。 2014年3月10日的X射线耀斑的特征是上升时间长(〜7700 s),衰减快(〜844 s)。它的总持续时间是迄今为止在X射线中检测到的最长时间之一。其NIR对应物在X射线最大值出现之前(4320 s)达到峰值,这表明在此事件期间X射线与NIR的通量比发生了显着变化。此NIR / X射线耀斑可解释为单个耀斑,其中X射线对NIR通量比的变化可通过等离激子的绝热压缩来解释,也可以解释为两个相距1.2 h且同时在峰中出现峰的不同耀斑X射线和NIR。我们发现在2014年3月10日,VLA在13.37 GHz处的上升的无线电通量密度增加了,这可能是我们观测开始之前发生的NIR / X射线耀斑的延迟无线电发射。 2014年4月2日X射线耀斑发生在地球掩埋Sgr A *的HST期间,因此我们仅观察到了其近红外对应物的开始。借助加速电子产生的NIR同步加速器发射,并假设同步加速器自康普顿发射产生X射线,该NIR / X射线耀斑的区域大小为0.03?假设同步加速器的光谱指数为0.3?,则它是Schwarzschild半径的7倍,电子密度为10〜(8.5)– 10〜(10.2)cm〜(-3)。 1.5。当Sgr A *重新出现在HST视图中时,我们观察到一个明显的近红外NIR耀斑的衰减阶段,在X射线中没有可检测到的对应物。 2014年4月3日,CARMA观测到两个3.2 mm的耀斑,其中第一个可能是VLT观测到的NIR耀斑的延迟发射(4.4 h)。结论。我们观察到总共7个NIR耀斑,其中3个具有探测到的X射线对应物。在没有检测到X射线对应物的情况下,对于NIR耀斑而言,耀斑区域的物理参数受到的约束较小,但是不能排除所有可能的辐射过程(同步加速器,同步加速器自身康普顿或逆康普顿)用于产生X射线耀斑。在XMM-牛顿总有效暴露〜256 ks期间观察到三个X射线耀斑。该张开速率与2012年Chandra XVP活动期间观察到的那些一致,这表明在DSO / G2的近中点附近没有触发张开活动的增加。此外,已经在Chandra和XMM-Newton上观察到较高的扩口率,而静态水平没有任何增加,这表明X射线扩口率的增加与吸积率的变化之间没有直接联系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号