首页> 外文期刊>Astronomy and astrophysics >Computation of eigenfrequencies for equilibrium models including turbulent pressure
【24h】

Computation of eigenfrequencies for equilibrium models including turbulent pressure

机译:包括湍流压力的平衡模型的本征频率计算

获取原文
           

摘要

Context. The space-borne missions CoRoT and Kepler have provided a wealth of highly accurate data. However, our inability to properly model the upper-most region of solar-like stars prevents us from making the best of these observations. This problem is called “surface effect” and a key ingredient to solve it is turbulent pressure for the computation of both the equilibrium models and the oscillations. While 3D hydrodynamic simulations help to include properly the turbulent pressure in the equilibrium models, the way this surface effect is included in the computation of stellar oscillations is still subject to uncertainties. Aims. We aim at determining how to properly include the effect of turbulent pressure and its Lagrangian perturbation in the adiabatic computation of the oscillations. We also discuss the validity of the gas-gamma model and reduced gamma model approximations, which have been used to compute adiabatic oscillations of equilibrium models including turbulent pressure. Methods. We use a patched model of the Sun with an inner part constructed by a 1D stellar evolution code (CESTAM) and an outer part by the 3D hydrodynamical code (CO ~(5) BOLD). Then, the adiabatic oscillations are computed using the ADIPLS code for the gas-gamma and reduced gamma model approximations and with the MAD code imposing the adiabatic condition on an existing time-dependent convection formalism. Finally, all those results are compared to the observed solar frequencies. Results. We show that the computation of the oscillations using the time-dependent convection formalism in the adiabatic limit improves significantly the agreement with the observed frequencies compared to the gas-gamma and reduced gamma model approximations. Of the components of the perturbation of the turbulent pressure, the perturbation of the density and advection term is found to contribute most to the frequency shift. Conclusions. The turbulent pressure is certainly the dominant factor responsible for the surface effects. Its inclusion into the equilibrium models is thus necessary but not sufficient. Indeed, the perturbation of the turbulent pressure must be properly taken into account for computing adiabatic oscillation frequencies. We propose a formalism to evaluate the frequency shift due to the inclusion of the term with the turbulent pressure perturbation in the variational principle in order to extrapolate our result to other stars at various evolutionary stages. Although this work is limited to adiabatic oscillations and the inclusion of the turbulent pressure, future works will have to account for the nonadiabatic effect and convective backwarming.
机译:上下文。 CoRoT和开普勒(Kepler)太空飞行任务提供了大量的高精度数据。但是,我们无法正确模拟太阳系恒星的最上层区域,这使我们无法充分利用这些观测资料。这个问题称为“表面效应”,解决该问题的关键因素是湍流压力,用于计算平衡模型和振动。尽管3D流体动力学模拟有助于将湍流压力适当地包含在平衡模型中,但在计算表面震荡时将这种表面效应包括在内的方式仍存在不确定性。目的我们旨在确定如何在振荡的绝热计算中适当地包括湍流压力及其拉格朗日扰动的影响。我们还讨论了气体伽玛模型和简化伽玛模型近似的有效性,这些模型已用于计算包括湍流压力的平衡模型的绝热振荡。方法。我们使用太阳的修补模型,其内部由1D恒星演化代码(CESTAM)构建,外部由3D流体动力学代码(CO〜(5)BOLD)构建。然后,使用用于气体伽玛和简化伽玛模型近似的ADIPLS代码以及通过将绝热条件强加于现有的与时间有关的对流形式上的MAD代码来计算绝热振荡。最后,将所有这些结果与观测到的太阳频率进行比较。结果。我们表明,在绝热极限中使用时间相关的对流形式主义进行的振荡计算,与气体伽玛和减少的伽玛模型近似值相比,显着提高了与观测频率的一致性。在湍流压力扰动的各个组成部分中,发现密度和对流项的扰动对频移的影响最大。结论。湍流压力无疑是造成表面效应的主要因素。因此,将其包括在平衡模型中是必要的,但还不够。实际上,在计算绝热振荡频率时必须适当考虑湍流压力的扰动。我们提出一种形式主义来评估由于在变分原理中加入了湍流压力扰动而产生的频移,以便将我们的结果外推到处于不同演化阶段的其他恒星。尽管这项工作仅限于绝热振荡和湍流压力的影响,但未来的工作将不得不考虑非绝热效应和对流回暖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号