...
首页> 外文期刊>The Astrophysical journal >THE ABUNDANCE OF MOLECULAR HYDROGEN AND ITS CORRELATION WITH MIDPLANE PRESSURE IN GALAXIES: NON-EQUILIBRIUM, TURBULENT, CHEMICAL MODELS
【24h】

THE ABUNDANCE OF MOLECULAR HYDROGEN AND ITS CORRELATION WITH MIDPLANE PRESSURE IN GALAXIES: NON-EQUILIBRIUM, TURBULENT, CHEMICAL MODELS

机译:星系中分子氢的丰度及其与中平面压力的关系:非平衡,湍流,化学模型

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Observations of spiral galaxies show a strong linear correlation between the ratio of molecular to atomic hydrogen surface density R mol and midplane pressure. To explain this, we simulate three-dimensional, magnetized turbulence, including simplified treatments of non-equilibrium chemistry and the propagation of dissociating radiation, to follow the formation of H2 from cold atomic gas. The formation timescale for H2 is sufficiently long that equilibrium is not reached within the 20-30?Myr lifetimes of molecular clouds. The equilibrium balance between radiative dissociation and H2 formation on dust grains fails to predict the time-dependent molecular fractions we find. A simple, time-dependent model of H2 formation can reproduce the gross behavior, although turbulent density perturbations increase molecular fractions by a factor of few above it. In contradiction to equilibrium models, radiative dissociation of molecules plays little role in our model for diffuse radiation fields with strengths less than 10 times that of the solar neighborhood, because of the effective self-shielding of H2. The observed correlation of R mol with pressure corresponds to a correlation with local gas density if the effective temperature in the cold neutral medium of galactic disks is roughly constant. We indeed find such a correlation of R mol with density. If we examine the value of R mol in our local models after a free-fall time at their average density, as expected for models of molecular cloud formation by large-scale gravitational instability, our models reproduce the observed correlation over more than an order-of-magnitude range in density.
机译:旋涡星系的观测结果表明,分子氢原子表面密度R mol与分子氢原子之比与中平面压力之间存在很强的线性关系。为了解释这一点,我们模拟了三维磁化湍流,包括简化的非平衡化学处理和离解辐射的传播,以追踪由冷原子气体形成的H2。 H2的形成时间尺度足够长,以至在分子云的20-30?Myr寿命内无法达到平衡。辐射解离与尘埃上的H2形成之间的平衡平衡无法预测我们发现的随时间变化的分子分数。尽管湍流密度扰动使分子分数比其高出几分之一,但简单,随时间变化的H2形成模型可以重现总体行为。与平衡模型相反,由于H2的有效自我屏蔽,分子的辐射解离在强度小于太阳邻域强度的10倍的扩散辐射场模型中几乎没有作用。如果银河星盘的冷中性介质中的有效温度大致恒定,则观察到的R mol与压力的相关性对应于与局部气体密度的相关性。我们确实发现了R mol与密度的这种关系。如果我们在自由下落时间后以其平均密度检查本地模型中的R mol值,这是由大规模重力不稳定性形成的分子云模型所期望的,则我们的模型将重现观察到的相关性,其阶次大于密度的幅度范围。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号