...
【24h】

The snow border

机译:雪境

获取原文

摘要

Context. The study of the snow line is an important topic in several domains of astrophysics, and particularly for the evolution of proto-stellar environments and the formation of planets. Aims. The formation of the first layer of ice on carbon grains requires low temperatures compared to the temperature of evaporation (T?>?100?K). This asymmetry generates a zone in which bare and icy dust grains coexist. Our?aim is to derive the proportion of bare grains around the theoretical snow line position for a typical low-mass protostellar disk and a massive protostar, and estimate the size of this mixing zone compared to the dust envelope size. Methods. We use Monte-Carlo simulations to describe the formation time scales of ice mantles on bare grains in protostellar disks and massive protostars environments. Then we analytically describe these two systems in terms of grain populations subject to infall and turbulence, and assume steady-state. Numerical applications use standard numbers obtained by previous observations or modelling of the astrophysical objects studied. Results. Our results show that there is an extended region beyond the snow line where icy and bare grains can coexist, in?both proto-planetary disks and massive protostars. This zone is not negligible compared to the total size of the objects:?on?the order of 0.4?AU for proto-planetary disks and 5400?AU for high-mass protostars. Times to reach the steady-state are respectively estimated from?102 to?105?yr. Conclusions. The presence of a zone, a so-called snow border, in?which bare and icy grains coexist can have a major impact on our knowledge of protostellar environments. From a theoretical point of?view, the?progression of icy grains to bare grains as the temperature increases, could be a realistic way to model hot cores and hot corinos. Also, in?this zone, the?formation of planetesimals will require the coagulation of bare and icy grains. Observationally, this zone allows high abundances of gas phase species at large scales, for?massive protostars particularly, even at low temperatures (down?to?50?K). This could be a critical point for the analysis of upcoming water observations by the Herschel Space Observatory.
机译:上下文。对雪线的研究是在天体物理学的多个领域中的重要课题,特别是对于原恒星环境的演化和行星的形成。目的与蒸发温度相比,在碳粒上形成第一层冰需要较低的温度(T≥100≤K)。这种不对称会产生一个区域,在该区域中,裸露的和冰冷的尘埃颗粒共存。我们的目的是针对典型的低质量原恒星盘和巨大的原恒星得出理论雪线位置周围的裸粒比例,并与尘土包络尺寸相比,估算该混合区的尺寸。方法。我们使用蒙特卡洛模拟来描述原恒星盘​​和大量原恒星环境中裸露颗粒上冰幔的形成时间尺度。然后,我们根据受降雨和湍流影响的谷物种群来分析描述这两个系统,并假设它们处于稳态。数值应用使用通过先前的观测或对所研究天体的建模而获得的标准数字。结果。我们的研究结果表明,在原行星盘和巨大的原恒星中,有一个超出雪线的扩展区域,在该区域中,冰粒和裸粒可以共存。与天体的总大小相比,该区域不可忽略:对于原行星盘而言,约为0.4?AU,对于高质量原星而言约为5400?AU。达到稳态所需的时间分别估计为102年至105年。结论。裸露和冰粒共存的区域,即所谓的雪边界,可能会对我们对原恒星环境的认识产生重大影响。从理论的角度来看,随着温度的升高,冰晶向裸晶的发展可能是模拟热核和热Corinos的现实方法。同样,在这个区域中,小行星的形成将需要裸露的和冰冷的颗粒凝结。观察到,即使在低温(低至50?K)下,该区域也可以大规模产生高丰度的气相物种,尤其是对于大量的原恒星。这可能是赫歇尔太空天文台分析即将进行的水观测的关键点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号