首页> 外文期刊>Applied Microbiology >Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring
【24h】

Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

机译:产氧光合作用控制来自硫化泉蓝藻中的产氧光合作用。

获取原文
       

摘要

Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H_(2)S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H_(2)S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO_(3)~(?) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.
机译:在地球完全氧合之前(0.58至5.5亿年前),元古代海洋的光合带可能是氧化还原分层的,在光限制层之上的养分有限,上层略有氧,趋向于趋于游民。在这样的海洋中,能够进行氧气和硫化物驱动的产氧光合作用的蓝细菌在全球碳,氧和硫循环中起着根本性的作用。我们已经分离出蓝细菌,Pseudanabaena菌株FS39,其中这种通用性仍然保持不变,并且我们表明两种光合模式之间的过渡遵循出乎意料的简单动力学调节,该动力学调节是由该生物对H_(2)S的亲和力控制的。具体地,仅当H_(2)S变得受限并且其浓度降低到阈值以下时,才进行除氧合光合作用之外的氧光合作用,该阈值随可用环境光可预测地增加。有氧和无氧光合作用的碳基生长速率相似。然而,假单胞菌FS39在产氧光合作用中还吸收了NO_(3)〜(α)。因此,产氧和产氧光合作用之间的过渡伴随着总生物质总碳/氮比的变化。这些机制提供了新的见解,尽管尽管元古代中期中的氧化性光合带中的养分受到限制,但多功能蓝细菌可能促进了氧的光合作用和总初级生产力,这是使我们的星球和地球完全氧化的关键一步。随后的生活多样化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号