首页> 外文期刊>Applied Microbiology >Development of Aspirin-Inducible Biosensors in Escherichia coli and SimCells
【24h】

Development of Aspirin-Inducible Biosensors in Escherichia coli and SimCells

机译:大肠杆菌和SimCells中阿司匹林诱导型生物传感器的开发

获取原文
       

摘要

A simple aspirin-inducible system has been developed and characterized in Escherichia coli by employing the Psal promoter and SalR regulation system originally from Acinetobacter baylyi ADP1. Mutagenesis at the DNA binding domain (DBD) and chemical recognition domain (CRD) of the SalR protein in A. baylyi ADP1 suggests that the effector-free form, SalRr, can compete with the effector-bound form, SalRa, binding the Psal promoter and repressing gene transcription. The induction of the Psal promoter was compared in two different gene circuit designs: a simple regulation system (SRS) and positive autoregulation (PAR). Both regulatory circuits were induced in a dose-dependent manner in the presence of 0.05 to 10?μM aspirin. Overexpression of SalR in the SRS circuit reduced both baseline leakiness and the strength of the Psal promoter. The PAR circuit forms a positive feedback loop that fine-tunes the level of SalR. A mathematical simulation based on the SalRr/SalRa competitive binding model not only fit the observed experimental results in SRS and PAR circuits but also predicted the performance of a new gene circuit design for which weak expression of SalR in the SRS circuit should significantly improve induction strength. The experimental result is in good agreement with this prediction, validating the SalRr/SalRa competitive binding model. The aspirin-inducible systems were also functional in probiotic strain E. coli Nissle 1917 and SimCells produced from E. coli MC1000 ΔminD. These well-characterized and modularized aspirin-inducible gene circuits would be useful biobricks for synthetic biology.IMPORTANCE An aspirin-inducible SalR/Psal regulation system, originally from Acinetobacter baylyi ADP1, has been designed for E. coli strains. SalR is a typical LysR-type transcriptional regulator (LTTR) family protein and activates the Psal promoter in the presence of aspirin or salicylate in the range of 0.05 to 10?μM. The experimental results and mathematical simulations support the competitive binding model of the SalR/Psal regulation system in which SalRr competes with SalRa to bind the Psal promoter and affect gene transcription. The competitive binding model successfully predicted that weak SalR expression would significantly improve the inducible strength of the SalR/Psal regulation system, which is confirmed by the experimental results. This provides an important mechanism model to fine-tune transcriptional regulation of the LTTR family, which is the largest family of transcriptional regulators in the prokaryotic kingdom. In addition, the SalR/Psal regulation system was also functional in probiotic strain E. coli Nissle 1917 and minicell-derived SimCells, which would be a useful biobrick for environmental and medical applications.
机译:通过使用最初来自拜氏不动杆菌ADP1的Psal启动子和SalR调节系统,已经开发了一种简单的阿司匹林诱导系统,并在大肠杆菌中进行了表征。 Baylyi ADP1中SalR蛋白的DNA结合结构域(DBD)和化学识别结构域(CRD)的诱变表明,无效应子形式SalRr可与效应子结合形式SalRa竞争,结合Psal启动子并抑制基因转录。在两种不同的基因电路设计中比较了Psal启动子的诱导:简单调控系统(SRS)和正自调控(PAR)。在0.05至10?μM阿司匹林的存在下,两种调节回路均以剂量依赖性方式被诱导。 SRS回路中SalR的过表达减少了基线漏气和Psal启动子的强度。 PAR电路形成一个正反馈环路,可微调SalR的电平。基于SalRr / SalRa竞争性结合模型的数学模拟不仅适合在SRS和PAR电路中观察到的实验结果,而且还预测了新基因电路设计的性能,该基因电路的SalR在SRS电路中的弱表达将显着提高感应强度。实验结果与该预测吻合良好,验证了SalRr / SalRa竞争结合模型。阿司匹林诱导的系统还在益生菌菌株大肠杆菌Nissle 1917和由大肠杆菌MC1000ΔminD产生的SimCell中起作用。这些表征良好且模块化的阿司匹林诱导基因电路将是合成生物学的有用生物砖。重要说明:阿司匹林诱导的SalR / Psal调控系统最初是从拜氏不动杆菌ADP1设计的,用于大肠杆菌菌株。 SalR是一种典型的LysR型转录调节因子(LTTR)家族蛋白,在存在0.05至10?μM范围的阿司匹林或水杨酸酯的情况下激活Psal启动子。实验结果和数学模拟支持SalR / Psal调控系统的竞争结合模型,其中SalRr与SalRa竞争以结合Psal启动子并影响基因转录。竞争性结合模型成功地预测了弱的SalR表达将显着提高SalR / Psal调控系统的诱导强度,这一点已被实验结果证实。这为微调LTTR家族的转录调控提供了重要的机制模型,LTTR家族是原核生物中最大的转录调控子家族。此外,SalR / Psal调控系统在益生菌菌株Nissle 1917和微细胞衍生的SimCells中也起作用,这对于环境和医学应用将是有用的生物砖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号