...
首页> 外文期刊>Applied Microbiology >Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community
【24h】

Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community

机译:煤焦油污染的地下水微生物群落中Variovorax物种对苯的降解

获取原文
           

摘要

Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [13C]benzene enabled us to obtain 13C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities.IMPORTANCE Benzene is a human carcinogen whose presence in contaminated groundwater drives environmental cleanup efforts. Although the aerobic biodegradation of benzene has long been established, knowledge of the identity of the microorganisms in complex naturally occurring microbial communities responsible for benzene biodegradation has evaded scientific inquiry for many decades. Here, we applied a molecular biology technique known as stable isotope probing (SIP) to the microbial communities residing in contaminated groundwater samples to identify the community members active in benzene biodegradation. We complemented this approach by isolating and growing in the laboratory a bacterium representative of the bacteria found using SIP. Further characterization of the isolated bacterium enabled us to track the expression of a key gene that attacks benzene both in pure cultures of the bacterium and in the naturally occurring groundwater microbial community. This work advances information regarding the documentation of microbial processes, especially the populations and genes that contribute to bioremediation.
机译:对环境微生物群落的调查对于发现能够降解有害化合物的种群至关重要,并可能导致改进的生物修复策略。这项研究的目的是确定造成煤焦油污染的地下水中好氧苯降解的微生物。使用气相色谱质谱仪(GC-MS)在井水的实验室培养中监测苯的降解。使用[13C]苯的稳定同位素探测(SIP)实验使我们能够获得13C标记的群落DNA。据此,16S rRNA克隆文库鉴定出γ变形杆菌和β变形杆菌为活动的苯代谢微生物种群。随后的培养实验产生了九种细菌分离株,它们在苯的存在下生长。在实验室培养物中证实了五种可以在苯上生长。分离的苯降解生物与SIP实验中鉴定的生物在基因型上相似(> 97%的16S rRNA基因核苷酸身份)。进一步研究了一种分离株,Variovorax MAK3,用于假定的芳香环-羟化双加氧酶(RHD)的表达,该假定被认为与苯降解有关。使用Variovorax MAK3的缩影实验显示RHD(Vapar_5383)表达增加了10倍,从而在该基因与苯降解之间建立了联系。此外,将Variovorax MAK3添加到由现场水制备的微观世界中可加速群落苯降解并相应增加RHD基因表达。在未接种地下水的微观世界中,定量(q)PCR分析(具有16S rRNA和RDH基因)表明存在Variovorax,并对添加的苯有反应。这些数据证明了依赖于耕种和不依赖耕种的技术的融合如何能增进人们对复杂的降解苯的微生物群落中活动种群和功能基因的了解。重要事项苯是一种人类致癌物,其在被污染的地下水中的存在推动了环境清洁工作。尽管对苯的需氧生物降解早已建立,但数十年来,人们对复杂的自然环境中负责苯生物降解的微生物群落中微生物身份的认识一直躲避科学探索。在这里,我们将一种被称为稳定同位素探测(SIP)的分子生物学技术应用于居住在被污染的地下水样本中的微生物群落,以识别出参与苯生物降解的群落成员。我们通过在实验室中分离和培养代表使用SIP发现的细菌的细菌来补充这种方法。分离细菌的进一步表征使我们能够追踪在细菌的纯培养物和天然存在的地下水微生物群落中攻击苯的关键基因的表达。这项工作可提供有关微生物过程特别是有助于生物修复的种群和基因的文献资料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号