首页> 外文期刊>Applied Microbiology >Methylphosphonate Oxidation in Prochlorococcus Strain MIT9301 Supports Phosphate Acquisition, Formate Excretion, and Carbon Assimilation into Purines
【24h】

Methylphosphonate Oxidation in Prochlorococcus Strain MIT9301 Supports Phosphate Acquisition, Formate Excretion, and Carbon Assimilation into Purines

机译:丙氧球菌菌株MIT9301中的甲基膦酸酯氧化可支持磷酸盐的采集,甲酸盐的排泄和碳同化为嘌呤。

获取原文
获取外文期刊封面目录资料

摘要

The marine unicellular cyanobacterium Prochlorococcus is an abundant primary producer and widespread inhabitant of the photic layer in tropical and subtropical marine ecosystems, where the inorganic nutrients required for growth are limiting. In this study, we demonstrate that Prochlorococcus high-light strain MIT9301, an isolate from the phosphate-depleted subtropical North Atlantic Ocean, can oxidize methylphosphonate (MPn) and hydroxymethylphosphonate (HMPn), two phosphonate compounds present in marine dissolved organic matter, to obtain phosphorus. The oxidation of these phosphonates releases the methyl group as formate, which is both excreted and assimilated into purines in RNA and DNA. Genes encoding the predicted phosphonate oxidative pathway of MIT9301 were predominantly present in Prochlorococcus genomes from parts of the North Atlantic Ocean where phosphate availability is typically low, suggesting that phosphonate oxidation is an ecosystem-specific adaptation of some Prochlorococcus populations to cope with phosphate scarcity.IMPORTANCE Until recently, MPn was only known to be degraded in the environment by the bacterial carbon-phosphorus (CP) lyase pathway, a reaction that releases the greenhouse gas methane. The identification of a formate-yielding MPn oxidative pathway in the marine planctomycete Gimesia maris (S. R. Gama, M. Vogt, T. Kalina, K. Hupp, et al., ACS Chem Biol 14:735–741, 2019, https://doi.org/10.1021/acschembio.9b00024) and the presence of this pathway in Prochlorococcus indicate that this compound can follow an alternative fate in the environment while providing a valuable source of P to organisms. In the ocean, where MPn is a major component of dissolved organic matter, the oxidation of MPn to formate by Prochlorococcus may direct the flow of this one-carbon compound to carbon dioxide or assimilation into biomass, thus limiting the production of methane.
机译:海洋单细胞蓝细菌Prochlorococcus是热带和亚热带海洋生态系统中光合层的主要生长期和广泛栖息地,那里生长所需的无机养分受到限制。在这项研究中,我们证明了原球菌高光菌株MIT9301(贫乏亚热带北大西洋磷酸盐的分离株)可以氧化海洋溶解有机物中存在的两种膦酸酯化合物甲基膦酸酯(MPn)和羟甲基膦酸酯(HMPn),从而获得磷。这些膦酸酯的氧化释放出甲酸酯基的甲基,甲酸酯被排泄并同化为RNA和DNA中的嘌呤。编码MIT9301的预测的膦酸酯氧化途径的基因主要存在于北大西洋部分地区的原球藻基因组中,该地区的磷酸盐利用率通常较低,这表明膦酸酯氧化是某些原球菌种群对生态系统的适应性,以应对磷酸盐的短缺。直到最近,人们才知道MPn会通过细菌碳磷(CP)裂解酶途径在环境中降解,该反应会释放温室气体甲烷。在海洋浮游菌Gimesia maris中鉴定形成甲酸的MPn氧化途径(SR Gama,M.Vogt,T.Kalina,K.Hupp等人,ACS Chem Biol 14:735-741,2019,https:/ /doi.org/10.1021/acschembio.9b00024)和Prochlorococcus中该途径的存在表明,该化合物可以跟随环境中的另一种命运,同时为生物提供有价值的P来源。在海洋中,MPn是溶解有机物的主要成分,原球菌将MPn氧化为甲酸可能将这种单碳化合物的流动引导至二氧化碳或同化成生物质,从而限制了甲烷的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号