首页> 外文期刊>Applied Microbiology >Geothrix fermentans Secretes Two Different Redox-Active Compounds To Utilize Electron Acceptors across a Wide Range of Redox Potentials
【24h】

Geothrix fermentans Secretes Two Different Redox-Active Compounds To Utilize Electron Acceptors across a Wide Range of Redox Potentials

机译:Geothrix fermentans分泌两种不同的氧化还原活性化合物,以在广泛的氧化还原电位中利用电子受体

获取原文
           

摘要

The current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial genera Geobacter and Shewanella . However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of the Acidobacteria , Geothrix fermentans . In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE), G. fermentans required potentials as high as 0.55 V to respire at its maximum rate. In addition, G. fermentans secreted two different soluble redox-active electron shuttles with separate redox potentials (?0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found in G. fermentans supernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals that Geothrix is able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined to Shewanella , and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies of Geothrix and Geobacter , these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.
机译:目前对异化金属还原的理解主要是基于变形杆菌属Geobacter和Shewanella的分离物。但是,进行Fe(III)主动还原的环境通常带有较少研究的同等丰富的门。在这项工作中,电化学技术被用来通过唯一已知的Fe(III)还原性酸性细菌Geothrix fermentans来分析呼吸电子传递。与以前表征的金属还原细菌相反,该细菌通常在0 V的电子受体电势下相对于标准氢电极(SHE)达到最大呼吸速率,而发酵发酵乳杆菌需要高达0.55 V的电势才能以其最大速率呼吸。此外,发酵乳杆菌分泌了两种具有不同氧化还原电势(〜0.2 V和0.3 V)的可溶性可溶性氧化还原活性电子梭。具有较低中点电势(占电子转移活性的20%至30%)的化合物是核黄素。较高电势的化合物的行为与之前在发酵酵母中上清液中发现的亲水性UV荧光分子一致。当用Fe(III)培养培养物时,也产生了两个电子穿梭体,但是当富马酸酯是电子受体时,则没有。这项研究表明Geothrix能够利用较高氧化还原电位的环境,证明基于黄素的穿梭分子的分泌不仅限于希瓦氏菌,而且还指出了参与细胞外电子的高电位氧化还原活性化合物的存在转让。基于Geothrix和Geobacter的呼吸策略之间的差异,这两类细菌可能存在于由氧化还原电势定义的独特环境生态位中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号