首页> 外文期刊>Applied Microbiology >Engineering of Corynebacterium glutamicum for High-Yield l-Valine Production under Oxygen Deprivation Conditions
【24h】

Engineering of Corynebacterium glutamicum for High-Yield l-Valine Production under Oxygen Deprivation Conditions

机译:缺氧条件下谷氨酸棒杆菌生产高产l-缬氨酸的工程

获取原文
       

摘要

We previously demonstrated efficient l-valine production by metabolically engineered Corynebacterium glutamicum under oxygen deprivation. To achieve the high productivity, a NADH/NADPH cofactor imbalance during the synthesis of l-valine was overcome by engineering NAD-preferring mutant acetohydroxy acid isomeroreductase (AHAIR) and using NAD-specific leucine dehydrogenase from Lysinibacillus sphaericus . Lactate as a by-product was largely eliminated by disrupting the lactate dehydrogenase gene ldhA . Nonetheless, a few other by-products, particularly succinate, were still produced and acted to suppress the l-valine yield. Eliminating these by-products therefore was deemed key to improving the l-valine yield. By additionally disrupting the phosphoenolpyruvate carboxylase gene ppc , succinate production was effectively suppressed, but both glucose consumption and l-valine production dropped considerably due to the severely elevated intracellular NADH/NAD~(+) ratio. In contrast, this perturbed intracellular redox state was more than compensated for by deletion of three genes associated with NADH-producing acetate synthesis and overexpression of five glycolytic genes, including gapA , encoding NADH-inhibited glyceraldehyde-3-phosphate dehydrogenase. Inserting feedback-resistant mutant acetohydroxy acid synthase and NAD-preferring mutant AHAIR in the chromosome resulted in higher l-valine yield and productivity. Deleting the alanine transaminase gene avtA suppressed alanine production. The resultant strain produced 1,280 mM l-valine at a yield of 88% mol mol of glucose~(?1) after 24 h under oxygen deprivation, a vastly improved yield over our previous best.
机译:我们以前证明了在缺氧条件下,通过代谢工程改造的谷氨酸棒状杆菌可以高效生产L-缬氨酸。为了实现高生产率,通过工程改造NAD优选突变体乙酰羟酸异构还原酶(AHAIR)并使用球形芽孢杆菌的NAD特异性亮氨酸脱氢酶克服了L-缬氨酸合成过程中的NADH / NADPH辅因子失衡问题。通过破坏乳酸脱氢酶基因ldhA,基本上消除了作为副产物的乳酸。尽管如此,仍产生了一些其他副产物,特别是琥珀酸盐,并起抑制L-缬氨酸产率的作用。因此,消除这些副产物被认为是提高1-缬氨酸产量的关键。通过另外破坏磷酸烯醇丙酮酸羧化酶基因ppc,琥珀酸的产生被有效地抑制,但是由于细胞内NADH / NAD〜(+)比的严重升高,葡萄糖的消耗和1-缬氨酸的产生均显着下降。相比之下,这种干扰的细胞内氧化还原状态通过与产生NADH的乙酸酯合成相关的三个基因的缺失和编码NADH抑制的3-磷酸甘油醛脱氢酶的5个糖酵解基因(包括gapA)的过表达而得到了补偿。在染色体中插入抗反馈的突变型乙酰羟酸合酶和NAD优先的突变型AHAIR可提高I-缬氨酸的产量和生产力。删除丙氨酸转氨酶基因avtA抑制了丙氨酸的产生。所得菌株在缺氧24小时后产生了1,280 mM的L-缬氨酸,产率为88%mol mol葡萄糖〜(?1),比我们以前的最好方法大大提高了产量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号