...
首页> 外文期刊>Applied and Environmental Microbiology >Using a Genome-Scale Metabolic Model of Enterococcus faecalis V583 To Assess Amino Acid Uptake and Its Impact on Central Metabolism
【24h】

Using a Genome-Scale Metabolic Model of Enterococcus faecalis V583 To Assess Amino Acid Uptake and Its Impact on Central Metabolism

机译:使用粪肠球菌V583的基因组规模代谢模型评估氨基酸摄入及其对中枢代谢的影响

获取原文
           

摘要

Increasing antibiotic resistance in pathogenic bacteria necessitates the development of new medication strategies. Interfering with the metabolic network of the pathogen can provide novel drug targets but simultaneously requires a deeper and more detailed organism-specific understanding of the metabolism, which is often surprisingly sparse. In light of this, we reconstructed a genome-scale metabolic model of the pathogen Enterococcus faecalis V583. The manually curated metabolic network comprises 642 metabolites and 706 reactions. We experimentally determined metabolic profiles of E. faecalis grown in chemically defined medium in an anaerobic chemostat setup at different dilution rates and calculated the net uptake and product fluxes to constrain the model. We computed growth-associated energy and maintenance parameters and studied flux distributions through the metabolic network. Amino acid auxotrophies were identified experimentally for model validation and revealed seven essential amino acids. In addition, the important metabolic hub of glutamine/glutamate was altered by constructing a glutamine synthetase knockout mutant. The metabolic profile showed a slight shift in the fermentation pattern toward ethanol production and increased uptake rates of multiple amino acids, especially l-glutamine and l-glutamate. The model was used to understand the altered flux distributions in the mutant and provided an explanation for the experimentally observed redirection of the metabolic flux. We further highlighted the importance of gene-regulatory effects on the redirection of the metabolic fluxes upon perturbation. The genome-scale metabolic model presented here includes gene-protein-reaction associations, allowing a further use for biotechnological applications, for studying essential genes, proteins, or reactions, and the search for novel drug targets.
机译:致病菌中抗生素耐药性的提高需要开发新的药物治疗策略。干扰病原体的代谢网络可以提供新的药物靶标,但同时又需要对代谢的更深入,更详细的有机体特异性了解,而这往往令人惊讶地稀疏。鉴于此,我们重建了病原肠球菌V583的基因组规模代谢模型。手动管理的代谢网络包含642个代谢产物和706个反应。我们通过实验确定了在化学定义的培养基中以不同的稀释率在厌氧的恒化器中生长的粪肠球菌的代谢谱,并计算了净摄入量和产物通量以约束模型。我们计算了与生长相关的能量和维持参数,并研究了通过代谢网络的通量分布。实验确定了氨基酸营养缺陷型,用于模型验证,并揭示了七个必需氨基酸。另外,通过构建谷氨酰胺合成酶敲除突变体,改变了谷氨酰胺/谷氨酸的重要代谢中心。代谢曲线显示发酵模式向乙醇生产的轻微转变,并增加了多种氨基酸(特别是l-谷氨酰胺和l-谷氨酸)的吸收率。该模型用于了解突变体中改变的通量分布,并为实验观察到的代谢通量重定向提供了解释。我们进一步强调了扰动后代谢通量的重定向中基因调控作用的重要性。此处介绍的基因组规模代谢模型包括基因-蛋白质反应关联,从而可以进一步用于生物技术应用,研究必需的基因,蛋白质或反应,以及寻找新的药物靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号