首页> 外文期刊>Applied and Environmental Microbiology >Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1
【24h】

Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1

机译:甲型甲烷氧化菌甲烷甲烷单氧菌68-1生产可溶性甲烷单加氧酶和三氯乙烯降解

获取原文
           

摘要

A methanotroph (strain 68-1), originally isolated from a trichloroethylene (TCE)-contaminated aquifer, was identified as the type I methanotroph Methylomonas methanica on the basis of intracytoplasmic membrane ultrastructure, phospholipid fatty acid profile, and 16S rRNA signature probe hybridization. Strain 68-1 was found to oxidize naphthalene and TCE via a soluble methane monooxygenase (sMMO) and thus becomes the first type I methanotroph known to be able to produce this enzyme. The specific whole-cell sMMO activity of 68-1, as measured by the naphthalene oxidation assay and by TCE biodegradation, was comparatively higher than sMMO activity levels in Methylosinus trichosporium OB3b grown in the same copper-free conditions. The maximal naphthalene oxidation rates of Methylomonas methanica 68-1 and Methylosinus trichosporium OB3b were 551 ± 27 and 321 ± 16 nmol h-1 mg of protein -1, respectively. The maximal TCE degradation rates of Methylomonas methanica 68-1 and Methylosinus trichosporium OB3b were 2,325 ± 260 and 995 ± 160 nmol h-1 mg of protein-1, respectively. The substrate affinity of 68-1 sMMO to naphthalene (Km, 70 ± 4 μM) and TCE (Km, 225 ± 13 μM), however, was comparatively lower than that of the sMMO of OB3b, which had affinities of 40 ± 3 and 126 ± 8 μM, respectively. Genomic DNA slot and Southern blot analyses with an sMMO gene probe from Methylosinus trichosporium OB3b showed that the sMMO genes of 68-1 have little genetic homology to those of OB3b. This result may indicate the evolutionary diversification of the sMMOs.
机译:根据细胞质内膜超微结构,磷脂脂肪酸谱和16S rRNA标记探针杂交技术,最初从受三氯乙烯(TCE)污染的含水层中分离出的甲烷营养菌(菌株68-1)被鉴定为I型甲烷营养菌甲烷单胞菌。发现菌株68-1通过可溶性甲烷单加氧酶(sMMO)氧化萘和TCE,因此成为已知能够产生这种酶的第一种I型甲烷营养生物。通过萘氧化测定和TCE生物降解法测得的68-1的全细胞sMMO特定活性相对高于在相同的无铜条件下生长的甲基毛孢菌OB3b中的sMMO活性水平。甲烷单甲基甲烷菌68-1和毛孢甲基孢子虫OB3b的最大萘氧化速率分别为蛋白质-1的551±27和321±16 nmol h-1。 Methylomonas methanica 68-1和Trichosporium OB3b的最大TCE降解率分别为2-1,325±260和995±160 nmol h-1 mg-1蛋白。 68-1 sMMO对萘(Km,70±4μM)和TCE(Km,225±13μM)的底物亲和力相对低于OB3b的sMMO,其亲和力为40±3和分别为126±8μM。用来自毛霉甲基芽孢杆菌OB3b的sMMO基因探针进行基因组DNA槽和Southern印迹分析表明68-1的sMMO基因与OB3b的基因同源性很小。该结果可能表明sMMOs的进化多样化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号