...
首页> 外文期刊>Bulletin of the Korean Chemical Society >Hydrogen Surface Coverage Dependence of the Reaction between Gaseous and Chemisorbed Hydrogen Atoms on a Silicon Surface
【24h】

Hydrogen Surface Coverage Dependence of the Reaction between Gaseous and Chemisorbed Hydrogen Atoms on a Silicon Surface

机译:硅表面上气态和化学吸附氢原子之间反应的氢表面覆盖率依赖性

获取原文

摘要

The reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. Especially, we have focused on the mechanism changes with the hydrogen surface coverage difference. On the sparsely covered surface, the gas atom interacts with the preadsorbed hydrogen atom and adjacent bare surface sites. In this case, it is shown that the chemisorption of H(g) is of major importance. Nearly all of the chemisorption events accompany the desorption of H(ad), i.e., adisplacement reaction. Although much less important than the displacement reaction, the formation of H2(g) is the second most significant reaction pathway. At gas temperature of 1800 K and surface temperature of 300 K, the probabilities of these two reactions are 0.750 and 0.065, respectively. The adsorption of H(g) without dissociating H(ad) is found to be negligible. In the reaction pathway forming H2, most of the reaction energy is carried by H2(g). Although the majority of H2(g) molecules are produced in sub-picosecond, direct-mode collisions, there is a small amount of H2(g) produced in multiple impact collisions, which is characteristic of complex-mode collisions. On the fully covered surface, it has been shown that the formation of H2(g) is of major importance. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. At gas temperature of 1800 K and surface temperature of 300 K, the probability of the H2(g) formation reaction is 0.082. In this case, neither the gas atom trapping nor the displacement reaction has been found.
机译:利用经典的轨迹方法研究了气相原子氢与化学吸附在硅表面的氢原子的反应。特别是,我们着重研究了氢表面覆盖率差异引起的机理变化。在稀疏覆盖的表面上,气体原子与预吸附的氢原子和相邻的裸露表面部位相互作用。在这种情况下,表明H(g)的化学吸附是最重要的。几乎所有化学吸附事件都伴随着H(ad)的解吸,即置换反应。尽管比置换反应重要得多,但H2(g)的形成是第二重要的反应途径。在1800 K的气体温度和300 K的表面温度下,这两个反应的概率分别为0.750和0.065。发现H(g)的吸附而不解离H(ad)可以忽略不计。在形成H2的反应路径中,大部分反应能量由H2(g)携带。尽管大多数H2(g)分子是在亚皮秒级的直接模式碰撞中产生的,但在多次撞击中仍会产生少量的H2(g),这是复杂模式碰撞的特征。在完全覆盖的表面上,已表明H2(g)的形成非常重要。遵循Eley-Rideal机制,所有反应事件都在亚皮秒级发生。在1800 K的气体温度和300 K的表面温度下,H2(g)形成反应的可能性为0.082。在这种情况下,既没有发现气体原子的捕获也没有发现置换反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号