...
首页> 外文期刊>BMC Genomics >Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing
【24h】

Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing

机译:通过结合使用高密度遗传图谱的QTL定位图和大量分离的RNA序列揭示的玉米籽粒行号的遗传结构

获取原文
           

摘要

Background The maize kernel row number (KRN) is a key component that contributes to grain yield and has high broad-sense heritability ( H 2 ). Quantitative trait locus/loci (QTL) mapping using a high-density genetic map is a powerful approach to detecting loci that are responsible for traits of interest. Bulked segregant ribonucleic acid (RNA) sequencing (BSR-seq) is another rapid and cost-effective strategy to identify QTL. Combining QTL mapping using a high-density genetic map and BSR-seq may dissect comprehensively the genetic architecture underlying the maize KRN. Results A panel of 300?F2 individuals derived from inbred lines abe2 and B73 were genotyped using the specific-locus amplified fragment sequencing (SLAF-seq) method. A total of 4,579 high-quality polymorphic SLAF markers were obtained and used to construct a high-density genetic map with a total length of 2,123 centimorgan (cM) and an average distance between adjacent markers of 0.46?cM. Combining the genetic map and KRN of F2 individuals, four QTL ( qKRN1 , qKRN2 , qKRN5 , and qKRN8-1 ) were identified on chromosomes 1, 2, 5, and 8, respectively. The physical intervals of these four QTL ranged from 4.36?Mb for qKRN8-1 to 7.11?Mb for qKRN1 with an average value of 6.08?Mb. Based on high-throughput sequencing of two RNA pools bulked from leaves of plants with extremely high and low KRNs, two QTL were detected on chromosome 8 in the 10–25?Mb ( BSR_QTL1 ) and 60–150?Mb ( BSR_QTL2 ) intervals. According to the physical positions of these QTL, qKRN8-1 was included by BSR_QTL2 . In addition, qKRN8-1 was validated using QTL mapping with a recombinant inbred lines population that was derived from inbred lines abe2 and B73. Conclusions In this study, we proved that combining QTL mapping using a high-density genetic map and BSR-seq is a powerful and cost-effective approach to comprehensively revealing genetic architecture underlying traits of interest. The QTL for the KRN detected in this study, especially qKRN8-1 , can be used for performing fine mapping experiments and marker-assisted selection in maize breeding.
机译:背景技术玉米仁行号(KRN)是有助于提高籽粒产量并具有广泛的遗传力(H 2 )的关键成分。使用高密度遗传图谱进行定量性状基因座/基因座(QTL)定位是一种检测引起目的性状的基因座的有效方法。散装的分离核糖核酸(RNA)测序(BSR-seq)是另一种快速且经济高效的鉴定QTL的策略。结合使用高密度遗传图谱和BSR-seq进行QTL定位,可以全面剖析玉米KRN的遗传结构。结果采用特异性位点扩增片段测序法(SLAF-seq)对来自自交系abe2和B73的300?F 2 个体进行基因分型。总共获得了4,579个高质量的多态性SLAF标记,并用于构建总长度为2,123厘摩(cM),相邻标记之间平均距离为0.46?cM的高密度遗传图谱。结合F 2 个体的遗传图谱和KRN,分别在1、2、5和8号染色体上鉴定了四个QTL(qKRN1,qKRN2,qKRN5和qKRN8-1)。这四个QTL的物理间隔范围从qKRN8-1的4.36?Mb到qKRN1的7.11?Mb,平均值为6.08?Mb。基于从具有极高和极低KRNs的植物叶片上扩增的两个RNA库的高通量测序,在10–25?Mb(BSR_QTL1)和60–150?Mb(BSR_QTL2)区间的8号染色体上检测到两个QTL。根据这些QTL的物理位置,BSR_QTL2包含qKRN8-1。另外,使用QTL作图通过衍生自近交系abe2和B73的重组近交系种群来验证qKRN8-1。结论在本研究中,我们证明了结合使用高密度遗传图谱和BSR-seq进行QTL定位是一种强大且具有成本效益的方法,可以全面揭示潜在感兴趣的遗传结构。在这项研究中检测到的KRN的QTL,特别是qKRN8-1,可以用于玉米育种中的精细作图实验和标记辅助选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号