首页> 外文期刊>BMC Genomics >Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation
【24h】

Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation

机译:葡萄酒酵母菌株的进化工程揭示了低温发酵过程中肌醇和甘露糖蛋白代谢的关键作用

获取原文
           

摘要

Background Wine produced at low temperature is often considered to improve sensory qualities. However, there are certain drawbacks to low temperature fermentations: e.g. low growth rate, long lag phase, and sluggish or stuck fermentations. Selection and development of new Saccharomyces cerevisiae strains well adapted at low temperature is interesting for future biotechnological applications. This study aimed to select and develop wine yeast strains that well adapt to ferment at low temperature through evolutionary engineering, and to decipher the process underlying the obtained phenotypes. Results We used a pool of 27 commercial yeast strains and set up batch serial dilution experiments to mimic wine fermentation conditions at 12?°C. Evolutionary engineering was accomplished by using the natural yeast mutation rate and mutagenesis procedures. One strain (P5) outcompeted the others under both experimental conditions and was able to impose after 200 generations. The evolved strains showed improved growth and low-temperature fermentation performance compared to the ancestral strain. This improvement was acquired only under inositol limitation. The transcriptomic comparison between the evolved and parental strains showed the greatest up-regulation in four mannoprotein coding genes, which belong to the DAN/TIR family (DAN1, TIR1, TIR4 and TIR3). Genome sequencing of the evolved strain revealed the presence of a SNP in the GAA1 gene and the construction of a site-directed mutant (GAA1 Thr108 ) in a derivative haploid of the ancestral strain resulted in improved fermentation performance. GAA1 encodes a GPI transamidase complex subunit that adds GPI, which is required for inositol synthesis, to newly synthesized proteins, including mannoproteins. Conclusions In this study we demonstrate the importance of inositol and mannoproteins in yeast adaptation at low temperature and the central role of the GAA1 gene by linking both metabolisms.
机译:背景技术通常认为在低温下生产葡萄酒可以改善感官品质。但是,低温发酵存在某些缺点:生长速度低,延迟期长,发酵缓慢或停滞。在低温下适应性强的新酿酒酵母菌株的选择和开发对于未来的生物技术应用是有趣的。这项研究旨在通过进化工程来选择和开发对低温发酵非常适应的葡萄酒酵母菌株,并破译获得的表型的基础过程。结果我们使用了27种商业酵母菌株,并建立了批量连续稀释实验,以模拟12℃的葡萄酒发酵条件。通过使用天然酵母突变率和诱变程序来完成进化工程。在两种实验条件下,一种菌株(P5)都比其他菌株更具竞争优势,并且能够在200代后施加。与祖先菌株相比,进化后的菌株显示出改善的生长和低温发酵性能。该改善仅在肌醇限制下获得。进化菌株和亲本菌株之间的转录组比较显示在四个甘露糖蛋白编码基因中最大的上调,这四个基因属于DAN / TIR家族(DAN1,TIR1,TIR4和TIR3)。进化菌株的基因组测序表明,GAA1基因中存在SNP,并且在祖先菌株的衍生单倍体中构建了定点突变体(GAA1 Thr108 ),从而提高了发酵性能。 GAA1编码一个GPI转酰胺酶复合物亚基,它将肌醇合成所需的GPI添加到新合成的蛋白质(包括甘露糖蛋白)中。结论在这项研究中,我们证明了肌醇和甘露糖蛋白在低温下酵母适应中的重要性以及通过将两种代谢联系在一起的GAA1基因的核心作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号