首页> 外文期刊>Journal of Water and Land Development >Forecasting suspended sediment load using regularized neural network: Case study of the Isser River (Algeria)
【24h】

Forecasting suspended sediment load using regularized neural network: Case study of the Isser River (Algeria)

机译:使用正则神经网络预测悬浮泥沙负荷:伊塞尔河(阿尔及利亚)的案例研究

获取原文

摘要

In the management of water resources in different hydro-systems it is important to evaluate and predict the sediment load in rivers. It is difficult to obtain an effective and fast estimation of sediment load by artificial neural network without avoiding over-fitting of the training data. The present paper comprises the comparison of a multi-layer perception network once with non-regularized network and the other with regularized network using the Early Stopping technique to estimate and forecast suspended sediment load in the Isser River, upstream of Beni Amran reservoir, northern Algeria. The study was carried out on daily sediment discharge and water discharge data of 30 years (1971a€“2001). The results of the Back Propagation based models were evaluated in terms of the coefficient of determination (R2) and the root mean square error (RMSE). Results of the comparison indicate that the regularizing ANN using the Early Stopping technique to avoid over-fitting performs better than non-regularized networks, and show that the overtraining in the back propagation occurs because of the complexity of the data introduced to the network.
机译:在不同水系水资源的管理中,重要的是评估和预测河流中的泥沙负荷。在不避免训练数据过度拟合的情况下,难以通过人工神经网络快速有效地估算泥沙负荷。本文包括一个多层感知网络的比较,一次是与非常规网络的比较,另一次是与常规网络的比较,使用早期停止技术来估计和预测阿尔及利亚北部贝尼·阿姆兰水库上游伊瑟河的悬浮泥沙负荷。 。该研究是根据30年(1971a – 2001)的日排沙量和排水量数据进行的。基于确定系数(R2)和均方根误差(RMSE)评估了基于反向传播的模型的结果。比较结果表明,使用早期停止技术避免过度拟合的正则化ANN比非正则化网络表现更好,并且表明回传中的过度训练是由于引入网络的数据的复杂性而发生的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号