首页> 外文期刊>Journal of Sensors >An Efficient Multi-Scale Local Binary Fitting-Based Level Set Method for Inhomogeneous Image Segmentation
【24h】

An Efficient Multi-Scale Local Binary Fitting-Based Level Set Method for Inhomogeneous Image Segmentation

机译:基于多尺度局部二值拟合的水平集方法用于不均匀图像分割

获取原文

摘要

An efficient level set model based on multiscale local binary fitting (MLBF) is proposed for image segmentation. By introducing multiscale idea into the LBF model, the proposed MLBF model can effectively and efficiently segment images with intensity inhomogeneity. In addition, by adding a reaction diffusion term into the level set evolution (LSE) equation, the regularization of the level set function (LSF) can be achieved, thus completely eliminating the time-consuming reinitialization process. In the implementation phase, in order to greatly improve the efficiency of the numerical solution of the level set segmentation model, we introduce three strategies The first is the additive operator splitting (AOS) solver which is used for breaking the restrictions on time step; the second is the salient target detection mechanism which is used to achieve full automatic initialization of the LSE process; the third is the sparse filed method (SFM) which is used to restrict the groups of pixels that need to be updated in a small strip region. Under the combined effect of these three strategies, the proposed model achieves very high execution efficiency in the following aspects contour location accuracy, speed of evolution convergence, robustness against initial contour position, and robustness against noise interference.
机译:提出了一种基于多尺度局部二值拟合(MLBF)的有效水平集模型进行图像分割。通过将多尺度思想引入到LBF模型中,提出的MLBF模型可以有效且高效地分割强度不均匀的图像。另外,通过将反应扩散项添加到水平集演化(LSE)方程中,可以实现水平集函数(LSF)的正则化,从而完全消除了耗时的重新初始化过程。在实施阶段,为了极大地提高水平集分割模型的数值解的效率,我们引入了三种策略。第一种是用于消除时间步长限制的加性算子分解(AOS)求解器。第二个是显着的目标检测机制,用于实现LSE过程的全自动初始化。第三个是稀疏域方法(SFM),用于限制在小条带区域中需要更新的像素组。在这三种策略的综合作用下,所提出的模型在以下方面实现了很高的执行效率:轮廓定位精度,演化收敛速度,针对初始轮廓位置的鲁棒性以及针对噪声干扰的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号