首页> 外文期刊>Journal of software >Accelerometer Based Gesture Recognition Using Fusion Features and SVM
【24h】

Accelerometer Based Gesture Recognition Using Fusion Features and SVM

机译:基于融合特征和SVM的基于加速度计的手势识别

获取原文
获取外文期刊封面目录资料

摘要

In this paper, a gesture recognition system based on single tri-axis accelerometer mounted on a cell phone is proposed. We present a novel human computer interaction for cell phone through recognizing seventeen complex gestures. A new feature fusion method for gesture recognition based on time-domain and frequency-domain is proposed. First of all, we extract the time-domain features from acceleration data, that is short-time energy. Secondly, we extract the hybrid features which combine Wavelet Packet Decomposition with Fast Fourier Transform. Finally, we fuse these two categories features together and employ the principal component analysis to reduce dimension of fusion features. The Classifier we used is Multi-class Support Vector Machine. The average recognition results of seventeen complex gestures using the proposed fusion feature are 89.89%, which better than previous works. The performance of experimental results show that gesturebased interaction can be used as a novel human computer interaction for mobile device and consumer electronics.
机译:本文提出了一种基于单三轴加速度计的手机手势识别系统。通过识别十七种复杂手势,我们提出了一种新颖的手机人机交互功能。提出了一种基于时域和频域的手势识别特征融合新方法。首先,我们从加速度数据中提取时域特征,即短时能量。其次,提取将小波包分解与快速傅立叶变换相结合的混合特征。最后,我们将这两类特征融合在一起,并采用主成分分析来减小融合特征的维数。我们使用的分类器是多类支持向量机。使用所提出的融合特征的十七种复杂手势的平均识别结果为89.89%,比以前的作品要好。实验结果的性能表明,基于手势的交互可以用作移动设备和消费电子产品的新型人机交互。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号