首页> 外文期刊>Journal of software >Incremental Learning for Dynamic Collaborative Filtering
【24h】

Incremental Learning for Dynamic Collaborative Filtering

机译:动态协作过滤的增量学习

获取原文

摘要

Collaborative Filtering (CF) is one of the widely used methods for recommendation problem. The key idea is to predict further the interests of a user (ratings) based on the available rating information from many users. Recently, matrix factorization (MF) based approaches, one branch of collaborative filtering, have proven successful for the rating prediction issues. However, most of the state-of-the-art MF models share the same drawback that the established models are static. They are only capable of handling CF systems with static settings, but never practical for a real-world system, which involves dynamic scenarios like new user signing in, new item being added and new rating being given now and then. For conventional MF models, they have to conduct repetitive learning every time dynamic scenario occurs. It is computational expensive and hard to meet the real-time demand. Therefore, an incremental learning framework based on Weighted NMF is proposed. To reduce the computational cost, it utilizes partially the optimization information from the original system, and stores some corresponding information for the subsequent incremental model. Our empirical studies show that the IWNMF scheme for different dynamic scenarios greatly lower the computational cost without degrading the prediction accuracy.
机译:协同过滤(CF)是推荐问题的一种广泛使用的方法。关键思想是根据来自许多用户的可用评分信息,进一步预测用户的兴趣(评分)。最近,事实证明,基于矩阵分解(MF)的方法(协作过滤的一个分支)已成功用于评级预测问题。但是,大多数最新的MF模型都有相同的缺点,即已建立的模型是静态的。它们仅能够处理具有静态设置的CF系统,而在实际系统中则不可行,因为它涉及动态场景,例如新用户登录,添加新项目以及不时给出新评级。对于传统的MF模型,每当发生动态情况时,他们都必须进行重复学习。计算量大并且难以满足实时需求。因此,提出了一种基于加权NMF的增量学习框架。为了减少计算成本,它部分地利用了原始系统的优化信息,并为后续的增量模型存储了一些相应的信息。我们的经验研究表明,针对不同动态场景的IWNMF方案在不降低预测精度的情况下大大降低了计算成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号