...
首页> 外文期刊>Journal of NeuroEngineering Rehabilitation >Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton
【24h】

Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton

机译:步态康复外骨骼的混合FES-机器人协同控制

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Robotic and functional electrical stimulation (FES) approaches are used for rehabilitation of walking impairment of spinal cord injured individuals. Although devices are commercially available, there are still issues that remain to be solved. Control of hybrid exoskeletons aims at blending robotic exoskeletons and electrical stimulation to overcome the drawbacks of each approach while preserving their advantages. Hybrid actuation and control have a considerable potential for walking rehabilitation but there is a need of novel control strategies of hybrid systems that adequately manage the balance between FES and robotic controllers. Combination of FES and robotic control is a challenging issue, due to the non-linear behavior of muscle under stimulation and the lack of developments in the field of hybrid control. In this article, a cooperative control strategy of a hybrid exoskeleton is presented. This strategy is designed to overcome the main disadvantages of muscular stimulation: electromechanical delay and change in muscle performance over time, and to balance muscular and robotic actuation during walking. Experimental results in healthy subjects show the ability of the hybrid FES-robot cooperative control to balance power contribution between exoskeleton and muscle stimulation. The robotic exoskeleton decreases assistance while adequate knee kinematics are guaranteed. A new technique to monitor muscle performance is employed, which allows to estimate muscle fatigue and implement muscle fatigue management strategies. Kinesis is therefore the first ambulatory hybrid exoskeleton that can effectively balance robotic and FES actuation during walking. This represents a new opportunity to implement new rehabilitation interventions to induce locomotor activity in patients with paraplegia. Acronym list: 10mWT: ten meters walking test; 6MWT: six minutes walking test; FSM: finite-state machine; t-FSM: time-domain FSM; c-FSM: cycle-domain FSM; FES: functional electrical stimulation; HKAFO: hip-knee-ankle-foot orthosis; ILC: iterative error-based learning control; MFE: muscle fatigue estimator; NILC: Normalized stimulation output from ILC controller; PID: Proportional-Integral-derivative Control; PW: Stimulation pulse width; QUEST: Quebec User Evaluation of Satisfaction with assistive Technology; SCI: Spinal cord injury; TTI: torque-time integral; VAS: Visual Analog Scale.
机译:机器人和功能性电刺激(FES)方法用于修复脊髓损伤个体的步行障碍。尽管设备在市场上可以买到,但仍有一些问题有待解决。混合外骨骼的控制旨在混合机器人外骨骼和电刺激,以克服每种方法的缺点,同时保留其优势。混合驱动和控制在步行康复中具有很大的潜力,但是需要能够充分管理FES和机器人控制器之间平衡的混合系统的新型控制策略。 FES和机器人控制相结合是一个具有挑战性的问题,因为在刺激下肌肉的非线性行为以及混合控制领域缺乏发展。在本文中,提出了一种混合外骨骼的协调控制策略。此策略旨在克服肌肉刺激的主要缺点:机电延迟和肌肉性能随时间变化,并在步行过程中平衡肌肉和机器人的驱动。健康受试者的实验结果表明,混合FES-机器人协同控制具有平衡外骨骼和肌肉刺激之间力量贡献的能力。机器人的外骨骼减少了辅助,同时保证了足够的膝关节运动。采用了一种监视肌肉性能的新技术,该技术可以估计肌肉疲劳并实施肌肉疲劳管理策略。因此,Kinesis是第一个可在步行过程中有效平衡机器人和FES致动的动态混合外骨骼。这代表了实施新的康复干预措施以诱导截瘫患者运动活动的新机会。缩略语表:10mWT:十米步行测试; 6MWT:六分钟步行测试; FSM:有限状态机; t-FSM:时域FSM; c-FSM:周期域FSM; FES:功能性电刺激; HKAFO:髋膝踝足矫形器; ILC:基于迭代错误的学习控制; MFE:肌肉疲劳估计器; NILC:ILC控制器的标准化刺激输出; PID:比例-积分-微分控制; PW:刺激脉冲宽度;任务:魁北克用户对辅助技术满意度的评价; SCI:脊髓损伤; TTI:转矩-时间积分; VAS:视觉模拟量表。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号