首页> 外文期刊>Journal of Modern Transportation >Application of artificial neural networks for operating speed prediction at horizontal curves: a case study in Egypt
【24h】

Application of artificial neural networks for operating speed prediction at horizontal curves: a case study in Egypt

机译:人工神经网络在水平曲线运行速度预测中的应用:以埃及为例

获取原文

摘要

Abstract Horizontal alignment greatly affects the speed of vehicles at rural roads. Therefore, it is necessary to analyze and predict vehicles speed on curve sections. Numerous studies took rural two-lane as research subjects and provided models for predicting operating speeds. However, less attention has been paid to multi-lane highways especially in Egypt. In this research, field operating speed data of both cars and trucks on 78 curve sections of four multi-lane highways is collected. With the data, correlation between operating speed ( V ~(85)) and alignment is analyzed. The paper includes two separate relevant analyses. The first analysis uses the regression models to investigate the relationships between V ~(85) as dependent variable, and horizontal alignment and roadway factors as independent variables. This analysis proposes two predicting models for cars and trucks. The second analysis uses the artificial neural networks (ANNs) to explore the previous relationships. It is found that the ANN modeling gives the best prediction model. The most influential variable on V ~(85) for cars is the radius of curve. Also, for V ~(85) for trucks, the most influential variable is the median width. Finally, the derived models have statistics within the acceptable regions and they are conceptually reasonable.
机译:摘要水平路线极大地影响了乡村道路上的车辆速度。因此,有必要分析和预测弯道上的车辆速度。许多研究都以农村两车道为研究对象,并提供了预测运行速度的模型。但是,对多车道公路的关注较少,尤其是在埃及。在这项研究中,收集了四个多车道公路的78个弯道段上的汽车和卡车的现场运行速度数据。利用这些数据,分析了运行速度(V〜(85))与对准之间的相关性。本文包括两个单独的相关分析。第一次分析使用回归模型研究作为变量的V〜(85)与作为自变量的水平线形和巷道因子之间的关系。该分析提出了两个针对汽车和卡车的预测模型。第二种分析使用人工神经网络(ANN)探索先前的关系。结果发现,人工神经网络建模提供了最佳的预测模型。对于汽车,V〜(85)上影响最大的变量是弯道半径。同样,对于卡车的V〜(85),影响最大的变量是中位宽度。最后,导出的模型在可接受的范围内具有统计信息,并且它们在概念上是合理的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号