首页> 外文期刊>Journal of machine learning research >Differentially Private Empirical Risk Minimization
【24h】

Differentially Private Empirical Risk Minimization

机译:差异化私人经验风险最小化

获取原文
           

摘要

Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ε-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets. Our results show that both theoretically and empirically, objective perturbation is superior to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between privacy and learning performance. color="gray">
机译:隐私保护的机器学习算法对于分析个人数据(例如病历或财务记录)的日益普遍的环境至关重要。我们提供一般技术,以产生通过(正规化)经验风险最小化(ERM)学习的分类器的隐私保护近似值。由于Dwork等,这些算法在 ε-差异隐私定义下是私有的。 (2006)。首先,我们应用Dwork等人的输出扰动思想。 (2006年),以ERM分类。然后我们提出了一种新的方法,目标摄动,用于隐私保护机器学习算法的设计。此方法需要在对分类器进行优化之前先扰动目标函数。如果损失和正则化满足某些凸性和可微性标准,我们证明理论结果表明我们的算法保留了隐私,并为线性和非线性核提供了泛化界。我们进一步提出了一种隐私保护技术,用于调整通用机器学习算法中的参数,从而为培训过程提供端到端的隐私保证。我们将这些结果应用于产生正则化Logistic回归和支持向量机的隐私保护类似物。通过评估他们在真实人口统计数据和基准数据集上的表现,我们获得了令人鼓舞的结果。我们的结果表明,从理论上和经验上讲,在管理隐私和学习绩效之间的固有权衡方面,客观扰动都优于以前的最新技术,输出扰动。 color =“ gray”>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号