首页> 外文期刊>Journal of healthcare engineering. >Molecular Skin Surface-Based Transformation Visualization between Biological Macromolecules
【24h】

Molecular Skin Surface-Based Transformation Visualization between Biological Macromolecules

机译:大分子之间基于分子皮肤表面的转化可视化

获取原文

摘要

Molecular skin surface (MSS), proposed by Edelsbrunner, is a C2 continuous smooth surface modeling approach of biological macromolecules. Compared to the traditional methods of molecular surface representations (e.g., the solvent exclusive surface), MSS has distinctive advantages including having no self-intersection and being decomposable and transformable. For further promoting MSS to the field of bioinformatics, transformation between different MSS representations mimicking the macromolecular dynamics is demanded. The transformation process helps biologists understand the macromolecular dynamics processes visually in the atomic level, which is important in studying the protein structures and binding sites for optimizing drug design. However, modeling the transformation between different MSSs suffers from high computational cost while the traditional approaches reconstruct every intermediate MSS from respective intermediate union of balls. In this study, we propose a novel computational framework named general MSS transformation framework (GMSSTF) between two MSSs without the assistance of union of balls. To evaluate the effectiveness of GMSSTF, we applied it on a popular public database PDB (Protein Data Bank) and compared the existing MSS algorithms with and without GMSSTF. The simulation results show that the proposed GMSSTF effectively improves the computational efficiency and is potentially useful for macromolecular dynamic simulations.
机译:Edelsbrunner提出的分子皮肤表面(MSS)是生物大分子的C2连续光滑表面建模方法。与传统的分子表面表示方法(例如,溶剂专有表面)相比,MSS具有显着的优势,包括无自交,可分解和可转化。为了将MSS进一步推广到生物信息学领域,需要在模仿大分子动力学的不同MSS表示之间进行转换。转化过程可帮助生物学家从原子水平上直观地了解大分子动力学过程,这对于研究蛋白质结构和结合位点以优化药物设计非常重要。但是,对不同的MSS之间的转换进行建模会带来较高的计算成本,而传统的方法是从各个球的中间并集重建每个中间的MSS。在这项研究中,我们提出了一种新颖的计算框架,称为两个MSS之间的通用MSS转换框架(GMSSTF),无需借助球的结合。为了评估GMSSTF的有效性,我们将其应用于流行的公共数据库PDB(蛋白质数据库),并比较了有无GMSSTF的现有MSS算法。仿真结果表明,所提出的GMSSTF有效地提高了计算效率,对高分子动态仿真具有潜在的实用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号