...
首页> 外文期刊>Journal of Cheminformatics >Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock
【24h】

Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock

机译:PM6半经验方法在蛋白质建模中的应用可提高AutoDock的对接精度

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background Molecular docking methods are commonly used for predicting binding modes and energies of ligands to proteins. For accurate complex geometry and binding energy estimation, an appropriate method for calculating partial charges is essential. AutoDockTools software, the interface for preparing input files for one of the most widely used docking programs AutoDock 4, utilizes the Gasteiger partial charge calculation method for both protein and ligand charge calculation. However, it has already been shown that more accurate partial charge calculation - and as a consequence, more accurate docking- can be achieved by using quantum chemical methods. For docking calculations quantum chemical partial charge calculation as a routine was only used for ligands so far. The newly developed Mozyme function of MOPAC2009 allows fast partial charge calculation of proteins by quantum mechanical semi-empirical methods. Thus, in the current study, the effect of semi-empirical quantum-mechanical partial charge calculation on docking accuracy could be investigated. Results The docking accuracy of AutoDock 4 using the original AutoDock scoring function was investigated on a set of 53 protein ligand complexes using Gasteiger and PM6 partial charge calculation methods. This has enabled us to compare the effect of the partial charge calculation method on docking accuracy utilizing AutoDock 4 software. Our results showed that the docking accuracy in regard to complex geometry (docking result defined as accurate when the RMSD of the first rank docking result complex is within 2 ? of the experimentally determined X-ray structure) significantly increased when partial charges of the ligands and proteins were calculated with the semi-empirical PM6 method. Out of the 53 complexes analyzed in the course of our study, the geometry of 42 complexes were accurately calculated using PM6 partial charges, while the use of Gasteiger charges resulted in only 28 accurate geometries. The binding affinity estimation was not influenced by the partial charge calculation method - for more accurate binding affinity prediction development of a new scoring function for AutoDock is needed. Conclusion Our results demonstrate that the accuracy of determination of complex geometry using AutoDock 4 for docking calculation greatly increases with the use of quantum chemical partial charge calculation on both the ligands and proteins.
机译:背景技术分子对接方法通常用于预测配体与蛋白质的结合模式和能量。对于精确的复杂几何形状和结合能估计,一种用于计算部分电荷的适当方法至关重要。 AutoDockTools软件是为最广泛使用的对接程序之一AutoDock 4准备输入文件的界面,它利用Gasteiger部分电荷计算方法进行蛋白质和配体电荷计算。但是,已经表明,使用量子化学方法可以实现更精确的部分电荷计算,从而可以实现更精确的对接。对于对接计算,迄今为止,量子化学部分电荷计算仅作为常规程序用于配体。 MOPAC2009的最新开发的Mozyme功能允许通过量子力学半经验方法快速计算蛋白质的部分电荷。因此,在当前的研究中,可以研究半经验量子力学部分电荷计算对对接精度的影响。结果使用Gasteiger和PM6部分电荷计算方法,对一套53种蛋白质配体复合物,使用原始的AutoDock评分功能对AutoDock 4的对接精度进行了研究。这使我们能够利用AutoDock 4软件比较部分费用计算方法对对接精度的影响。我们的研究结果表明,当配体和部分配体的部分电荷和杂散电荷部分结合时,复杂几何体的对接精度(对接结果定义为当第一对接结果复合体的RMSD在实验确定的X射线结构的2?以内时准确)。用半经验PM6方法计算蛋白质。在我们的研究过程中分析的53种配合物中,使用PM6部分装料可精确计算出42种配合物的几何形状,而使用Gasteiger装料仅可得出28种准确的几何形状。结合亲和力估计不受部分电荷计算方法的影响-为了更准确地进行结合亲和力预测,需要为AutoDock开发新的评分功能。结论我们的结果表明,通过对配体和蛋白质使用量子化学部分电荷计算,使用AutoDock 4进行对接计算确定复杂几何形状的准确性大大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号