首页> 外文期刊>Discussiones Mathematicae Graph Theory >On 3-Colorings of Direct Products of Graphs
【24h】

On 3-Colorings of Direct Products of Graphs

机译:关于图的直接乘积的三色

获取原文

摘要

The k -independence number of a graph G , denoted as α_(k) ( G ), is the order of a largest induced k -colorable subgraph of G . In [S. ?pacapan, The k-independence number of direct products of graphs , European J. Combin. 32 (2011) 1377–1383] the author conjectured that the direct product G × H of graphs G and H obeys the following bound α k ( G × H ) ≤ α k ( G ) | V ( H ) | + α k ( H ) | V ( G ) | ? α k ( G ) α k ( H ) , and proved the conjecture for k = 1 and k = 2. If true for k = 3 the conjecture strenghtens the result of El-Zahar and Sauer who proved that any direct product of 4-chromatic graphs is 4-chromatic [M. El-Zahar and N. Sauer, The chromatic number of the product of two 4 -chromatic graphs is 4, Combinatorica 5 (1985) 121–126]. In this paper we prove that the above bound is true for k = 3 provided that G and H are graphs that have complete tripartite subgraphs of orders α _(3)( G ) and α _(3)( H ), respectively.
机译:图G的k独立数,表示为α_(k)(G),是G的最大诱导k可着色子图的阶数。在[S. Pacapan,图的直接乘积的k独立数,欧洲J. Combin。 32(2011)1377–1383]作者推测图G和H的直接乘积G×H服从以下约束αk(G×H)≤αk(G)|。 V(高)| +αk(H)| V(G)| ? αk(G)αk(H),并证明k = 1和k = 2的猜想。如果k = 3成立,则该猜想加强了El-Zahar和Sauer的结果,后者证明了4的任何直接积彩色图是4色[M. El-Zahar和N. Sauer,两个4色图的乘积的色数为4,Combinatorica 5(1985)121-126]。在本文中,我们证明只要G和H是分别具有阶α_(3)(G)和α_(3)(H)的完整三方子图的图,则对于k = 3,上述界限是正确的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号