...
首页> 外文期刊>Hydrology and Earth System Sciences Discussions >Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use
【24h】

Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use

机译:气候和不确定性和人类用水影响下全球和大陆水资源平衡组成的变化

获取原文
           

摘要

When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water ons). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5?%, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74?% among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31?% in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13?% of the land area from 1911–1940 to 1941–1970.
机译:在使用水文模型评估全球水资源时,必须了解方法的不确定性。模拟的水平衡成分的值可能会因不同的时空聚集,参考期和所施加的气候强迫而有所变化,以及由于考虑了人类用水或缺乏人类用水而有所不同。我们通过使用五个最新的气候数据集(包括连接的WFD / WFDEI数据集的均质版本)强制使用全球水文模型WaterGAP 2.2(ISIMIP2a),分析了1901-2010年期间的这些变化。全球水平衡要素的绝对值和时间变化会受到气候强迫的不确定性的强烈影响,对于所考虑的四个均质气候强迫(人类水除外),没有发现全球水平衡要素的时间趋势。根据观测到的长期平均河流流量Q对WaterGAP进行校准,可以显着减少气候强迫不确定性对估算Q和可再生水资源的影响。对于均匀的强迫,在1971-2000年间,全球校准区域和非校准区域的Q分别变化了1.6和18.5%。在大陆范围内,长期平均降水P和Q估计值的最大差异发生在非洲,而且由于雨量计的积雪不足,欧洲和北美洲数据丰富的大陆也是如此。在校准单元上游和下游的几个网格单元中,网格单元尺度上的Q变化很大,在校准和非校准区域的四个均匀强迫中,平均变化分别为37%和74%。仅考虑强迫GSWP3和WFDEI_hom,即不包括未进行欠捕获校正的强迫(PGFv2.1)以及短波向下辐射SWD远小于其他强迫因素(WFD)的情况,Q值减小到16%和31%。校准和非校准区域。这些模拟结果支持需要扩展的Q测量和数据共享,以更好地约束全球水平衡评估。在20世纪,人类在自然水资源上的足迹越来越大。在全球11-11%的土地面积中,1941–1970年至1971–2000年之间的Q变化主要是由人类对水的使用(包括大坝建设)的变化而不是降水的变化所驱动,而只有9–10%的情况如此。从1911年至1940年到1941年至1970年,陆地面积的13%。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号