首页> 外文期刊>Theory of Computing >Robust Lower Bounds for Communication and Stream Computation
【24h】

Robust Lower Bounds for Communication and Stream Computation

机译:强大的通信和流计算下界

获取原文

摘要

We study the communication complexity of evaluating functionswhen the input data is randomly allocated (according to some knowndistribution) amongst two or more players, possibly withinformation overlap. This naturally extends previously studiedvariable partition models such as the best-case and worst-casepartition models. We aim to understand whether the hardness of acommunication problem holds for almost every allocation of theinput, as opposed to holding for perhaps just a few atypicalpartitions. A key application is to the heavily studied data streammodel. There is a strong connection between our communication lowerbounds and lower bounds in the data stream model that are“robust” to the ordering of the data. That is, weprove lower bounds for when the order of the items in the stream ischosen not adversarially but rather uniformly (or near-uniformly)from the set of all permutations. This random-order data streammodel has attracted recent interest, since lower bounds here givestronger evidence for the inherent hardness of streaming problems. Our results include the first random-partition communicationlower bounds for problems including multi-party set disjointnessand gap-Hamming-distance. Both are tight. We also extend andimprove previous results for a form of pointer jumping that isrelevant to the problem of selection (in particular, medianfinding). Collectively, these results yield lower bounds for avariety of problems in the random-order data stream model,including estimating the number of distinct elements, approximatingfrequency moments, and quantile estimation. A short version of this article is available in the Proceedings of the 40th Annual ACM Symposium on Theory of Computing(STOC'08), ACM, pp. 641-650. Compared to the conference presentation,this version considerably expands the detail of the discussionand in the proofs, and substantially changes some of theproof techniques.
机译:当输入数据在两个或多个参与者之间随机分配(根据某些已知分布)时,我们研究评估函数的通信复杂性,这可能是信息重叠。这自然扩展了先前研究的可变分区模型,例如最佳情况和最坏情况的分区模型。我们旨在了解沟通问题的难点是否适用于几乎所有输入分配,而不是仅适用于少数几个非典型分区。一个关键的应用是对数据流模型的深入研究。我们的通信下限和数据流模型中的下限之间有很强的联系,这对数据的排序是“可靠的”。也就是说,当从所有排列的集合中非对抗性地而是一致地(或几乎一致地)选择流中项目的顺序时,我们提供了下界。这种随机顺序的数据流模型引起了近期的关注,因为此处的下限为流问题的固有难度提供了更强的证据。我们的结果包括针对多方集合不相交和间隙-汉明距离等问题的第一个随机分区通信下界。两者都紧。我们还扩展和改进了与选择问题(尤其是中位数查找)相关的指针跳转形式的先前结果。总的来说,这些结果为随机顺序数据流模型中的各种问题提供了下界,包括估计不同元素的数量,近似频率矩和分位数估计。本文的简短版本可在第40届ACM计算理论年度学术会议论文集(STOC'08),ACM,第641-650页中找到。与会议演示文稿相比,此版本大大扩展了讨论和证明的细节,并大大改变了一些证明技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号