首页> 外文期刊>Theoretical Biology and Medical Modelling >Dynamically simulating the interaction of midazolam and the CYP3A4 inhibitor itraconazole using individual coupled whole-body physiologically-based pharmacokinetic (WB-PBPK) models
【24h】

Dynamically simulating the interaction of midazolam and the CYP3A4 inhibitor itraconazole using individual coupled whole-body physiologically-based pharmacokinetic (WB-PBPK) models

机译:使用个体偶联全身基于生理的药代动力学(WB-PBPK)模型动态模拟咪达唑仑和CYP3A4抑制剂伊曲康唑的相互作用

获取原文
       

摘要

Background Drug-drug interactions resulting from the inhibition of an enzymatic process can have serious implications for clinical drug therapy. Quantification of the drugs internal exposure increase upon administration with an inhibitor requires understanding to avoid the drug reaching toxic thresholds. In this study, we aim to predict the effect of the CYP3A4 inhibitors, itraconazole (ITZ) and its primary metabolite, hydroxyitraconazole (OH-ITZ) on the pharmacokinetics of the anesthetic, midazolam (MDZ) and its metabolites, 1' hydroxymidazolam (1OH-MDZ) and 1' hydroxymidazolam glucuronide (1OH-MDZ-Glu) using mechanistic whole body physiologically-based pharmacokinetic simulation models. The model is build on MDZ, 1OH-MDZ and 1OH-MDZ-Glu plasma concentration time data experimentally determined in 19 CYP3A5 genotyped adult male individuals, who received MDZ intravenously in a basal state. The model is then used to predict MDZ, 1OH-MDZ and 1OH-MDZ-Glu concentrations in an CYP3A-inhibited state following ITZ administration. Results For the basal state model, three linked WB-PBPK models (MDZ, 1OH-MDZ, 1OH-MDZ-Glu) for each individual were elimination optimized that resulted in MDZ and metabolite plasma concentration time curves that matched individual observed clinical data. In vivo Km and Vmax optimized values for MDZ hydroxylation were similar to literature based in vitro measures. With the addition of the ITZ/OH-ITZ model to each individual coupled MDZ + metabolite model, the plasma concentration time curves were predicted to greatly increase the exposure of MDZ as well as to both increase exposure and significantly alter the plasma concentration time curves of the MDZ metabolites in comparison to the basal state curves. As compared to the observed clinical data, the inhibited state curves were generally well described although the simulated concentrations tended to exceed the experimental data between approximately 6 to 12 hours following MDZ administration. This deviations appeared to be greater in the CYP3A5 *1/*1 and CYP3A5 *1/*3 group than in the CYP3A5 *3/*3 group and was potentially the result of assuming that ITZ/OH-ITZ inhibits both CYP3A4 and CYP3A5, whereas in vitro inhibition is due to CYP3A4. Conclusion This study represents the first attempt to dynamically simulate metabolic enzymatic drug-drug interactions via coupled WB-PBPK models. The workflow described herein, basal state optimization followed by inhibition prediction, is novel and will provide a basis for the development of other inhibitor models that can be used to guide, interpret, and potentially replace clinical drug-drug interaction trials.
机译:背景技术由于抑制酶促过程而产生的药物相互作用可能会对临床药物治疗产生严重影响。与抑制剂一起给药后,对药物内部暴露量的定量增加需要理解,以避免药物达到毒性阈值。在这项研究中,我们旨在预测CYP3A4抑制剂伊曲康唑(ITZ)及其主要代谢产物羟基伊曲康唑(OH-ITZ)对麻醉药咪达唑仑(MDZ)及其代谢物1'羟基咪达唑仑(1OH)的药代动力学的影响-MDZ)和1'羟基咪达唑仑葡糖醛酸(1OH-MDZ-Glu),使用基于机理的全身生理学药代动力学模拟模型。该模型基于在19位CYP3A5基因型成年男性个体中实验确定的MDZ,1OH-MDZ和1OH-MDZ-Glu血浆浓度时间数据建立,这些个体在基础状态下静脉内接受MDZ。然后将模型用于预测ITZ给药后CYP3A抑制状态的MDZ,1OH-MDZ和1OH-MDZ-Glu浓度。结果对于基础状态模型,对每个个体的三个链接的WB-PBPK模型(MDZ,1OH-MDZ,1OH-MDZ-Glu)进行了优化优化,从而得到了与个体观察到的临床数据相匹配的MDZ和代谢物血浆浓度时间曲线。体内MDZ羟化的K m 和V max 优化值类似于基于文献的体外测量。通过将ITZ / OH-ITZ模型添加到每个耦合的MDZ +代谢物模型中,可以预测血浆浓度时间曲线将大大增加MDZ的暴露量,并同时增加暴露量并显着改变血浆的浓度时间曲线。与基础状态曲线相比,MDZ代谢产物。与观察到的临床数据相比,尽管模拟浓度在MDZ给药后约6至12小时之间趋于超过实验数据,但抑制状态曲线通常被很好地描述。 CYP3A5 * 1 / * 1和CYP3A5 * 1 / * 3组的这种差异似乎比CYP3A5 * 3 / * 3组的更大,并且可能是假设ITZ / OH-ITZ抑制CYP3A4和CYP3A5的结果,而体外抑制是由于CYP3A4所致。结论本研究代表了通过耦合的WB-PBPK模型动态模拟代谢酶药物相互作用的首次尝试。本文所述的工作流程,即基础状态优化后进行抑制预测,是新颖的,将为开发其他抑制剂模型提供基础,这些模型可用于指导,解释和潜在替代临床药物相互作用试验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号