首页> 外文期刊>The Internet Journal of Microbiology >Production of Cellulase by Aspergillus niger on natural and pretreated lignocellulosic wastes
【24h】

Production of Cellulase by Aspergillus niger on natural and pretreated lignocellulosic wastes

机译:黑曲霉在天然和预处理的木质纤维素废料上生产纤维素酶

获取原文
       

摘要

Growth of Aspergillus niger on Czapek-dox medium supplemented with native lignocellulosics like Sawdust, wheat straw, Sugarcane baggage and Ricebran used for the production of cellulase by A.niger. Of these Czapek-dox medium with 0.5% Wheat straw had yielded more cellulase, FPase (2.9 U/ml), CMCase (2.9 U/ml) and β-glucosidase (0.93 U/ml) after 14-days of incubation. The lignocellulosics after pre-treatment improved cellulase production. Among the treated substrates, Czapek-dox medium with 0.5% saw dust had yielded FPase (6.3 U/ml), CMCase (7.2 U/ml) after 7-days of incubation and the medium with treated rice bran produced β-glucosidase of 1.04 U/ml after 21-days of incubation. Introduction Cellulose is the major polysaccharide constituent of plant cell wall and one of the most abundant available organic compounds in the biosphere and its estimated synthesis rate of 10 10 tones per year (Schlesinger, 1991; Singh and Hayashi, 1995; Lynd et al., 2002). Cellulose-rich plant biomass is one of the foreseeable and sustainable sources of fuel, animal feed and feed stock for chemical synthesis (Bhat, 2000). The utilization of cellulosic biomass continues to be a subject of worldwide interest in view of fast depletion of our oil reserves and food shortages (Kuhad et al., 1997; Gong et al., 1999). Cellulose serves as a vast reservoir of glucose residues linked by β-1, 4 glycosidic bonds. The conversion of cellulosic mass to fermentable sugars by saccharification through biocatalyst cellulase derived from cellulolytic organisms has been suggested as a feasible process and offers potential to reduce use of fossil fuels and reduce environmental pollution (Dale, 1999; Lynd et al., 1999). In addition to this process, the cellulolytic enzymes have also been exploited for commercial applications like malting, wood processing, preparation of denim fabrics in textile industries, maceration of protoplasts from plant tissues and de-inking process in recycling of printed papers. But the saccharification process has not reached to the level of commercialization in certain applications pertaining to production of biofuels. The major obstacle to the exploitation of cellulase is its high cost of production and include other factors like complexity of cellulose structure, the type and source of cellulose employed for production and low amounts of cellulases production by cellulolytic organisms due to catabolite repression influence economics of cellulase production. One effective approach to reduce the cost of enzyme production is to replace pure cellulose by relatively cheaper substrates such as lignocelluloses materials. The development of biorefineries to produce fuels and commodity chemicals from lignocellulosic biomass is viewed as a potential alternative to current reliance on nonrenewable resources. The so-called ‘‘sugar platform,’‘ involving enzymatic hydrolysis of the cellulose component to glucose, followed by fermentation to fuel-grade ethanol, is a focus of current attention. One of the primary challenges for process commercialization is the development of cost-effective pretreatment technologies for lignocellulosic feedstock’s (Lynd et al., 2002; Mosier et al., 2005; Wyman et al., 2005). Pretreatment is necessary to increase the accessibility of cellulose in lignocellulosic biomass to facilitate enzymatic hydrolysis. Unlike traditional sources of fermentable sugar, such as starch and sucrose, the cellulose component of lignocellulose is a structural polymer and is protected against enzymatic attack by the surrounding matrix of lignin and hemi cellulose. In view of biotechnological importance of cellulase, this study was focused on the production of cellulase on natural and pretreated cheap locally available lignocelluloses in submerged fermentation in a laboratory scale by the local isolate of Aspergillus niger isolated from cotton ginning mill effluents. Materials And Methods MicroorganismA local isolate of Aspergillus niger used in the st
机译:黑曲霉在Czapek-dox培养基上的生长,该培养基补充了木屑,小麦秸秆,甘蔗行李和Ricebran等天然木质纤维素,用于A.niger生产纤维素酶。孵育14天后,这些含0.5%麦草的Czapek-dox培养基产生了更多的纤维素酶,FPase(2.9 U / ml),CMCase(2.9 U / ml)和β-葡萄糖苷酶(0.93 U / ml)。预处理后的木质纤维素提高了纤维素酶的产量。在处理过的底物中,培养7天后,含0.5%锯末的Czapek-dox培养基产生FPase(6.3 U / ml),CMCase(7.2 U / ml),用处理过的米糠的培养基产生的β-葡萄糖苷酶为1.04孵育21天后的U / ml。简介纤维素是植物细胞壁的主要多糖成分,也是生物圈中最丰富的可用有机化合物之一,其估计的合成速率为每年10 10吨(Schlesinger,1991; Singh and Hayashi,1995; Lynd等, 2002)。富含纤维素的植物生物质是可预见和可持续的燃料,动物饲料和化学合成原料之一(Bhat,2000)。鉴于我们的石油储备迅速枯竭和粮食短缺,纤维素生物质的利用仍然是世界范围内关注的主题(Kuhad等,1997; Gong等,1999)。纤维素是由β-1、4个糖苷键连接的大量葡萄糖残基的储存库。有人建议通过将纤维素分解生物衍生的生物催化剂纤维素酶进行糖化作用,将纤维素物质转化为可发酵的糖,这是一个可行的过程,并有望减少化石燃料的使用并减少环境污染(Dale,1999; Lynd等,1999)。除此工艺外,纤维素分解酶还被用于商业用途,例如麦芽制浆,木材加工,纺织工业中牛仔布的制备,植物组织中原生质的浸渍以及印刷纸回收中的脱墨过程。但是,在与生物燃料生产相关的某些应用中,糖化过程尚未达到商业化的水平。利用纤维素酶的主要障碍是其生产成本高,并且包括其他因素,例如纤维素结构的复杂性,用于生产的纤维素的类型和来源以及由于分解代谢物抑制而导致的纤维素分解生物产生的纤维素酶的产量低,影响了纤维素酶的经济性。生产。降低酶生产成本的一种有效方法是用相对便宜的底物,例如木质纤维素材料代替纯纤维素。发展生物精炼厂以利用木质纤维素生物质生产燃料和日用化学品,被认为是当前对不可再生资源的依赖的潜在替代方案。所谓的“糖平台”是将纤维素成分酶解为葡萄糖,然后发酵为燃料级乙醇,这是当前关注的焦点。工艺商业化的主要挑战之一是开发具有成本效益的木质纤维素原料预处理技术(Lynd等,2002; Mosier等,2005; Wyman等,2005)。预处理对于增加木质纤维素生物质中纤维素的可及性是必要的,以促进酶促水解。与传统的可发酵糖源(例如淀粉和蔗糖)不同,木质纤维素的纤维素成分是结构聚合物,可被周围的木质素和半纤维素基体保护,免受酶的攻击。考虑到纤维素酶的生物技术重要性,本研究的重点是在实验室规模的沉浸式发酵中,通过从轧花轧棉厂废水中分离得到的黑曲霉的局部分离物,在天然和预处理的廉价廉价本地木质纤维素上生产纤维素酶。材料和方法微生物黑曲霉的局部分离物

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号