首页> 外文期刊>The Cryosphere Discussions >Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models
【24h】

Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models

机译:在大型冰盖模型中利用流致多晶各向异性实现冰的经验标量本构关系

获取原文
       

摘要

The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models – the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period – sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17?% when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction – both scenarios dominated at depth by bed-parallel shear – the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.
机译:多晶冰的微观结构在长期变形下演化,从而导致晶体取向的各向异性。大型冰盖模型中最常用的冰流关系-格伦流关系没有充分描述这种材料对施加应力的响应。我们目前对冰盖系统模型(ISSM)中的计算效率,经验,标量,本构关系的实现进行了初步评估,该关系解决了在冰上形成的动态稳态流动兼容感应各向异性晶体取向图案的影响长时间处于相同的应力状态下-有时称为三次流动。我们将此称为ESTAR流量关系。通过比较使用ESTAR和Glen流动关系的理想模拟来研究对冰流动动力学的影响,我们在后者中包括了总体流动增强因子。对于理想的嵌入式冰架,当使用与ESTAR关系中规定的最大值相等的增强因子时,Glen流动关系将速度高估了17%。重要的是,没有一个单一的Glen增强因子可以准确地捕获由ESTAR流量关系产生的整个冰架上流量的空间变化。对于在变化的地形或可变的基础摩擦条件下理想化的接地流的流线研究–两种情况在深度上都受到床平行剪切的影响–使用ESTAR和Glen流动关系模拟的速度之间的差异取决于用于校正水流的增强因子的值。格伦流关系。这些结果证明了以物理逼真的方式描述各向异性冰变形的重要性,并且对用于重建古冰层范围并预测未来冰层对海平面贡献的冰层演化的模拟具有启示意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号