...
首页> 外文期刊>Universal Journal of Electrical and Electronic Engineering >Band Anti-Crossing Modelling on Tailored Ga1-xInxN yAs1-y Band Gap Energy Based Nitrogen Fraction
【24h】

Band Anti-Crossing Modelling on Tailored Ga1-xInxN yAs1-y Band Gap Energy Based Nitrogen Fraction

机译:量身定制的Ga 1-x In x N y As 1-y 带隙能量的能带反穿越模型基于氮的分数

获取原文
           

摘要

This paper deals with a Band Anti-Crossing (BAC) modelling to investigate the tailoring of band gap energy of Ga1-xInxNyAs1-y alloy based on nitrogen fractions. Three different numerical methods have been adopted to estimate the extended state of conduction band ( ) parameters. The first two methods used Vegard’s law and Varshni’s equation to estimate by considering Ga_(1-x)In_(x)As as ternary alloy based on temperature dependence, with values of bowing parameter of 0.475 and 0.477, respectively. The third method used excitonic band gap theory for Ga1-xInxAs alloy temperature dependence by considering Passler fitting ( ) and average phonon temperature ( ). Results depict that optimum nitrogen fraction was in the range of 0.012 to 0.018% to achieve the device response at 1.3 μm wavelength, with an energy band gap in range of 0.955 ± 0.005 eV. Future work shows a potential study on influence of indium fractions in tailored energy band gap of Ga_(1-x)In_(x)N _(y)As_(1-y ) alloy and compressive strain of material.
机译:本文研究了带隙抗穿越(BAC)模型,以研究基于氮分数的Ga1-xInxNyAs1-y合金带隙能的定制。已采用三种不同的数值方法来估计导带()参数的扩展状态。前两种方法使用Vegard定律和Varshni方程,通过基于温度依赖性将Ga_(1-x)In_(x)As作为三元合金进行估算,其弯曲参数分别为0.475和0.477。第三种方法是通过考虑Passler拟合()和平均声子温度()将激子带隙理论用于Ga1-xInxAs合金的温度依赖性。结果表明,最佳的氮含量在0.012至0.018%的范围内,以实现在1.3μm波长下的器件响应,能带隙在0.955±0.005 eV的范围内。未来的工作表明了铟组分对Ga_(1-x)In_(x)N_(y)As_(1-y)合金定制能带隙和材料压缩应变的影响的潜在研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号