...
首页> 外文期刊>Polymers >Direct Micromachining of Microfluidic Channels on Biodegradable Materials Using Laser Ablation
【24h】

Direct Micromachining of Microfluidic Channels on Biodegradable Materials Using Laser Ablation

机译:使用激光烧蚀对可生物降解材料进行微流控通道的直接微加工

获取原文

摘要

Laser patterning on polymeric materials is considered a green and rapid manufacturing process with low material selection barrier and high adjustability. Unlike microelectromechanical systems (MEMS), it is a highly flexible processing method, especially useful for prototyping. This study focuses on the development of polymer surface modification method using a 193 nm excimer laser system for the design and fabrication of a microfluidic system similar to that of natural vasculatures. Besides from poly(dimethyl siloxane) (PDMS), laser ablation on biodegradable polymeric material, poly(glycerol sebacate) (PGS) and poly(1,3-diamino-2-hydroxypropane- co -polyol sebacate) (APS) are investigated. Parameters of laser ablation and fabrication techniques to create microchannels are discussed. The results show that nano/micro-sized fractures and cracks are generally observed across PDMS surface after laser ablation, but not on PGS and APS surfaces. The widths of channels are more precise on PGS and APS than those on PDMS. Laser beam size and channel depth are high correlation with a linear relationship. Repeated laser ablations on the same position of scaffolds reveal that the ablation efficiencies and edge quality on PGS and APS are higher than on PDMS, suggesting the high applicability of direct laser machining to PGS and APS. To ensure stable ablation efficiency, effects of defocus distance into polymer surfaces toward laser ablation stability are investigated. The depth of channel is related to the ratio of firing frequency and ablation progression speed. The hydrodynamic simulation of channels suggests that natural blood vessel is similar to the laser patterned U-shaped channels, and the resulting micro-patterns are highly applicable in the field of micro-fabrication and biomedical engineering.
机译:在聚合物材料上进行激光图案化被认为是一种绿色且快速的制造工艺,具有较低的材料选择障碍和高可调节性。与微机电系统(MEMS)不同,它是一种高度灵活的处理方法,特别适用于原型制作。这项研究致力于使用193 nm准分子激光系统开发聚合物表面修饰方法,以设计和制造类似于天然脉管系统的微流体系统。除了聚二甲基硅氧烷(PDMS)以外,还对可生物降解的聚合物材料聚癸二酸甘油酯(PGS)和聚(1,3-二氨基-2-羟基丙烷-共聚癸二酸酯多元醇)(APS)进行了激光烧蚀研究。讨论了激光烧蚀的参数和制造微通道的制造技术。结果表明,激光烧蚀后,通常会在PDMS表面观察到纳米/微米级的裂缝和裂纹,而在PGS和APS表面则观察不到。 PGS和APS上的通道宽度比PDMS上的通道宽度更精确。激光束大小和通道深度具有高度的线性关系。在支架的相同位置上重复进行激光烧蚀表明,PGS和APS的烧蚀效率和边缘质量高于PDMS,表明直接激光加工对PGS和APS的高度适用性。为了确保稳定的烧蚀效率,研究了进入聚合物表面的散焦距离对激光烧蚀稳定性的影响。通道的深度与发射频率与消融进展速度之比有关。通道的流体动力学模拟表明,天然血管类似于激光图案化的U形通道,所得的微模式在微加工和生物医学工程领域具有很高的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号