...
首页> 外文期刊>Universal Journal of Computational Mathematics >Numerical Simulation that Provides Non-oscillatory Solutions for Porous Medium Equation and Error Approximation of Boussinesq's Equation
【24h】

Numerical Simulation that Provides Non-oscillatory Solutions for Porous Medium Equation and Error Approximation of Boussinesq's Equation

机译:为多孔介质方程和Boussinesq方程的误差逼近提供非振动解的数值模拟

获取原文

摘要

So far, so many works have been done in a different way to find the exact track that can grasp the true solution for the one-dimensional porous media equation (PME). For instance, Monika studied using relaxation [1], Q. Zhang and Z. Wu. have already done the similar work by local degenerate Galarkin (LDG) method [12] and so on. Still, this is a challenge to find an appropriate scheme that can track the true solution when adiabatic exponent increases monotonically. In this paper, we have studied numerical result for where we have used Explicit-Implicit Finite Difference Method (EIFDM). Since so far PME is a degenerate parabolic equation and analytically the existence and uniqueness occur weakly only in the Sobolev sense, it is very hard to track the true solution numerically. Our main objective is to study numerically the PME with mixed boundary conditions and shown the result is helpful to track the Barenblatt's self similar solution and its interface when adiabatic exponent larger than 3 that provides much less error. This paper will show a possibility that Finite Difference Method (FDM) is also helpful rather the Finite Elements Method to track the interface in the simulation with an appropriate initial guess. Also checked L_(1), L_(2) and L_(∞)-error for Boussinesq's equation which is a fundamental equation of ground- water flow, hopefully, the simulated results can help when this equation is useful in the practical world. Finally, all studied results are given to show the advantage of the θ-scheme method in the simulation of the PME and its capability to capture accurately sharp interfaces without oscillation.
机译:到目前为止,已经以不同的方式完成了许多工作,以找到可以掌握一维多孔介质方程(PME)真实解的精确轨迹。例如,莫妮卡(Monika)使用松弛[1]进行了研究。已经通过局部简并Galarkin(LDG)方法[12]完成了类似的工作。但是,要找到一个能在绝热指数单调增加时跟踪真实解的合适方案仍然是一个挑战。在本文中,我们研究了使用显式-隐式有限差分法(EIFDM)的数值结果。到目前为止,由于PME是退化的抛物线方程,并且从分析上讲,存在和唯一性仅在Sobolev意义上较弱地发生,因此很难在数值上跟踪真实的解。我们的主要目标是对具有混合边界条件的PME进行数值研究,并表明当绝热指数大于3(误差小得多)时,该结果有助于跟踪Barenblatt的自相似解及其界面。本文将展示有限差分法(FDM)也有帮助的可能性,而不是有限元方法,它可以通过适当的初始猜测来跟踪仿真中的界面。还检查了作为地下水流基本方程的Boussinesq方程的L_(1),L_(2)和L_(∞)-误差,希望该方程在实际中有用时,模拟结果会有所帮助。最后,给出的所有研究结果均表明了θ方案方法在PME仿真中的优势,以及其能够准确捕获尖锐的界面而不会发生振荡的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号