...
首页> 外文期刊>NPG Asia Materials >Degradation behaviors and mechanisms of MoS 2 crystals relevant to bioabsorbable electronics
【24h】

Degradation behaviors and mechanisms of MoS 2 crystals relevant to bioabsorbable electronics

机译:MoS 2晶体与生物可吸收电子学相关的降解行为和机理

获取原文

摘要

Monolayer molybdenum disulfide (MoS2) exhibits unique semiconducting and bioresorption properties, giving this material enormous potential for electronic/biomedical applications, such as bioabsorbable electronics. In this regard, understanding the degradation performance of monolayer MoS2 in biofluids allows modulation of the properties and lifetime of related bioabsorbable devices and systems. Herein, the degradation behaviors and mechanisms of monolayer MoS2 crystals with different misorientation angles are explored. High-angle grain boundaries (HAGBs) biodegrade faster than low-angle grain boundaries (LAGBs), exhibiting degraded edges with wedge and zigzag shapes, respectively. Triangular pits that formed in the degraded grains have orientations opposite to those of the parent crystals, and these pits grow into larger pits laterally. These behaviors indicate that the degradation is induced and propagated based on intrinsic defects, such as grain boundaries and point defects, because of their high chemical reactivity due to lattice breakage and the formation of dangling bonds. High densities of dislocations and point defects lead to high chemical reactivity and faster degradation. The structural cause of MoS2 degradation is studied, and a feasible approach to study changes in the properties and lifetime of MoS2 by controlling the defect type and density is presented. The results can thus be used to promote the widespread use of two-dimensional materials in bioabsorption applications.
机译:单层二硫化钼(MoS2)具有独特的半导体和生物吸收特性,为电子/生物医学应用(如生物吸收性电子产品)提供了巨大的潜力。在这方面,了解生物流体中单层MoS2的降解性能可以调节相关生物可吸收设备和系统的性能和寿命。本文探讨了不同取向角的单层MoS2晶体的降解行为及其机理。高角度晶界(HAGB)的生物降解速度要比低角度晶界(LAGB)快,分别呈现出楔形和锯齿形的退化边缘。在降解晶粒中形成的三角形凹坑具有与母体晶体相反的取向,并且这些凹坑横向生长为更大的凹坑。这些行为表明,由于晶格断裂和悬空键的形成,它们具有很高的化学反应性,因此基于内在缺陷(例如晶界和点缺陷)来诱导和传播降解。位错和尖端缺陷的高密度导致高化学反应性和更快的降解。研究了MoS2降解的结构原因,提出了一种通过控制缺陷类型和密度研究MoS2的性能和寿命变化的可行方法。因此,该结果可用于促进二维材料在生物吸收应用中的广泛使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号