...
首页> 外文期刊>Processes >From Single Microparticles to Microfluidic Emulsification: Fundamental Properties (Solubility, Density, Phase Separation) from Micropipette Manipulation of Solvent, Drug and Polymer Microspheres
【24h】

From Single Microparticles to Microfluidic Emulsification: Fundamental Properties (Solubility, Density, Phase Separation) from Micropipette Manipulation of Solvent, Drug and Polymer Microspheres

机译:从单个微粒到微流体乳化:溶剂,药物和聚合物微球的微量移液操作的基本特性(溶解度,密度,相分离)

获取原文
           

摘要

The micropipette manipulation technique is capable of making fundamental single particle measurements and analyses. This information is critical for establishing processing parameters in systems such as microfluidics and homogenization. To demonstrate what can be achieved at the single particle level, the micropipette technique was used to form and characterize the encapsulation of Ibuprofen (Ibp) into poly(lactic-co-glycolic acid) (PLGA) microspheres from dichloromethane (DCM) solutions, measuring the loading capacity and solubility limits of Ibp in typical PLGA microspheres. Formed in phosphate buffered saline (PBS), pH 7.4, Ibp/PLGA/DCM microdroplets were uniformly solidified into Ibp/PLGA microparticles up to drug loadings ( DL ) of 41%. However, at DL 50 wt% and above, microparticles showed a phase separated pattern. Working with single microparticles, we also estimated the dissolution time of pure Ibp microspheres in the buffer or in detergent micelle solutions, as a function of the microsphere size and compare that to calculated dissolution times using the Epstein-Plesset (EP) model. Single, pure Ibp microparticles precipitated as liquid phase microdroplets that then gradually dissolved into the surrounding PBS medium. Analyzing the dissolution profiles of Ibp over time, a diffusion coefficient of 5.5 ± 0.2 × 10 ?6 cm 2 /s was obtained by using the EP model, which was in excellent agreement with the literature. Finally, solubilization of Ibp into sodium dodecyl sulfate (SDS) micelles was directly visualized microscopically for the first time by the micropipette technique, showing that such micellization could increase the solubility of Ibp from 4 to 80 mM at 100 mM SDS. We also introduce a particular microfluidic device that has recently been used to make PLGA microspheres, showing the importance of optimizing the flow parameters. Using this device, perfectly smooth and size-homogeneous microparticles were formed for flow rates of 0.167 mL/h for the dispersed phase ( Q d ) and 1.67 mL/h for the water phase ( Q c ), i.e., a flow rate ratio Q d / Q c of 10, based on parameters such as interfacial tension, dissolution rates and final concentrations. Thus, using the micropipette technique to observe the formation, and quantify solvent dissolution, solidification or precipitation of an active pharmaceutical ingredient (API) or excipient for single and individual microparticles, represents a very useful tool for understanding microsphere-processes and hence can help to establish process conditions without resorting to expensive and material-consuming bulk particle runs.
机译:微量移液器操作技术能够进行基本的单颗粒测量和分析。该信息对于在微流控和均质化等系统中建立处理参数至关重要。为了证明在单颗粒水平上可以实现的目标,使用微量移液器技术从二氯甲烷(DCM)溶液中形成并表征了布洛芬(Ibp)到聚乳酸-乙醇酸(PLGA)微球的包封,在典型的PLGA微球中Ibp的负载能力和溶解度极限。在pH 7.4的磷酸盐缓冲盐水(PBS)中形成,将Ibp / PLGA / DCM微滴均匀固化为Ibp / PLGA微粒,直至载药量(DL)为41%。但是,在DL 50wt%以上时,微粒显示出相分离的图案。使用单个微粒,我们还估算了纯Ibp微球在缓冲液或去污剂胶束溶液中的溶解时间,作为微球大小的函数,并将其与使用Epstein-Plesset(EP)模型计算的溶解时间进行比较。单个纯的Ibp微粒以液相微滴形式沉淀,然后逐渐溶解在周围的PBS介质中。通过分析Ibp随时间的溶出曲线,使用EP模型得到的扩散系数为5.5±0.2×10×6 cm 2 / s,这与文献非常吻合。最后,第一次通过显微移液技术在显微镜下首次直观地将Ibp溶解在十二烷基硫酸钠(SDS)胶束中,表明在100 mM SDS下,这种胶束化作用可以将Ibp的溶解度从4 mM增加到80 mM。我们还介绍了一种特定的微流体装置,该装置最近已用于制造PLGA微球,显示了优化流动参数的重要性。使用该装置,对于分散相(Q d)的流速为0.167 mL / h,对于水相(Q c)的流速为1.67 mL / h,即流速比Q形成了非常光滑且尺寸均匀的微粒。 d / Q c为10,基于诸如界面张力,溶解速率和最终浓度的参数。因此,使用微移液器技术观察并形成单个或单个微粒的活性药物成分(API)或赋形剂,并量化其溶解,固化或沉淀的溶剂,对于理解微球过程是非常有用的工具,因此有助于建立工艺条件而无需诉诸昂贵且消耗材料的大颗粒运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号